Skip to main content
Log in

Synthesis and characterization of multimetallic-core and siliceous-shell Au/Pt/Ag@SiO2 sol–gel derived nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Trimetallic Au/Pt/Ag nanocomposite loaded amine functionalized silica nanopowder (Au/Pt/Ag@SiO2 nanopowder) is prepared through sol–gel route. Surface morphology and bulk composition of the composite were obtained using atomic force microscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Brunauer–Emmett–Teller (BET) surface area, the pore volume and pore radius of the composite particles are calculated by applying the BET equation to the sorption isotherms. In addition to that, UV–Vis-diffuse reflectance spectrum was analyzed for the synthesized composite. The synthesized composite is proposed as the promising photocatalyst for the decolouration of methyl violet dye.

Graphical abstract

We have successfully reported the syntheses and photocatalytic decolouration activity of MV dye in aqueous solution under UV-A light irradiation by SiO2 and Au/Pt/Ag@SiO2 nanopowder. The sol–gel synthesized Au/Pt/Ag@SiO2 nanopowder is proposed as a promising photocatalyst for the decolouration of MV dye. The metallic core and siliceous shell enhance the photocatalytic decolouration activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choma J, Dziura A, Jamiola D, Nyga P, Jaroniec M (2011) Preparation and properties of silica–gold core–shell particles. Colloids Surf A 373:167–171

    Article  Google Scholar 

  2. Karthikeyan B, Murugavelu M (2013) Synthesis, characterization and evaluation of green catalytic activity of nano Ag–Pt doped silicate. J Alloys Compd 547:68–75

    Article  Google Scholar 

  3. Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:1038–1052

    Google Scholar 

  4. Manikandan A, Judith Vijaya J, John Kennedy L (2013) Comparative investigation of structural, optical properties and dye-sensitized solar cell applications of ZnO nanostructures. J Nanosci Nanotechnol 13:3068–3073

    Article  Google Scholar 

  5. Smith JN, Meadows J, Williams PA (1996) Adsorption of polyvinylpyrrolidone onto polystyrene latices and the effect on colloid stability. Langmuir 12:3773–3778

    Article  Google Scholar 

  6. Tao C, Li JB (2005) Morphosynthesis of microskeletal silica spheres templated by W/O microemulsion. Colloids Surf A 256:57–60

    Article  Google Scholar 

  7. Popok VN, Gromov AV, Nuzhdin VI, Stepanov AL (2010) Optical and AFM study of ion-synthesised silver nanoparticles in thin surface layers of SiO2 glass. J Non-Cryst Solids 356:1258–1261

    Article  Google Scholar 

  8. Kalele SA, Ashtaputre SS, Hebalkar NY, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2005) Optical detection of antibody using silica–silver core–shell particles. Chem Phys Lett 404:136–141

    Article  Google Scholar 

  9. Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of Escherichia Coli by using antibody-conjugated silver nanoshells. Small 2:335–338

    Article  Google Scholar 

  10. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125:11466–11467

    Article  Google Scholar 

  11. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutic. Annu Rev Biomed Eng 5:285–292

    Article  Google Scholar 

  12. Ethiraj AS, Hebalkar N, Kulkarni SK, Pasricha R, Urban J, Dem C, Schmitt M, Kiefer W, Weinhardt L, Joshi S, Fink R, Heske C, Kumpf C, Umbach E (2003) Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. J Chem Phys 118:8945–8953

    Article  Google Scholar 

  13. Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M (2012) Silica–metal core–shell nanostructures. Adv Colloid Interface Sci 170:28–47

    Article  Google Scholar 

  14. Lager GA, Jorgensen JD, Rotella FJ (1982) Crystal structure and thermal expansion of α-quartz SiO2 at low temperatures. J Appl Phys 53:6751–6756

    Article  Google Scholar 

  15. Loganathan B, Karthikeyan B (2013) Au core Pd/Pt shell in trimetallic Au/Pd/Pt colloidal nanocomposites—physicochemical characterization study. Colloids Surf A 436:944–952

    Article  Google Scholar 

  16. Venkatesan P, Santhanalakshmi J (2010) Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for sonogashira coupling reactions. Langmuir 26:12225–12229

    Article  Google Scholar 

  17. Wang L, Yamauchi Y (2011) Strategic synthesis of trimetallic Au@Pd@Pt core–shell nanoparticles from poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem Mater 23:2457–2465

    Article  Google Scholar 

  18. Zhang GR, Wu J, Xu BQ (2012) Syntheses of sub-30 nm Au@Pd concave nanocubes and Pt-on-(Au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J Phys Chem C 116:20839–20847

    Article  Google Scholar 

  19. Duan S, Ji YF, Fang PP, Chen YX, Xu X, Luo Y, Tian ZQ (2013) Density functional theory study on the adsorption and decomposition of the formic acid catalyzed by highly active mushroom-like Au@Pd@Pt tri-metallic nanoparticles. Phys Chem Chem Phys 15:4625–4633

    Article  Google Scholar 

  20. Abazari R, Heshmatpour F, Balalaie S (2013) Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions. ACS Catal 3:139–149

    Article  Google Scholar 

  21. Karthikeyan B, Loganathan B (2012) Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater Lett 85:53–56

    Article  Google Scholar 

  22. Karthikeyan B, Loganathan B (2013) Rapid green synthetic protocol for novel trimetallic nanoparticles. J Nanoparticles http://dx.doi.org/10.1155/2013/168916

  23. Karthikeyan B, Loganathan B (2013) A close look of Au/Pt/Ag nanocomposites using SERS assisted with optical, electrochemical, spectral and theoretical methods. Physica E 49:105–110

    Article  Google Scholar 

  24. Primo A, Corma A, Garcıa H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  Google Scholar 

  25. Labiadh H, Chaabane TB, Balan L, Becheik N, Corbel S, Medjahdi G, Schneider R (2014) Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity. Appl Catal B Environ 144:29–35

    Article  Google Scholar 

  26. Chandraboss VL, Senthilvelan S, Natanapatham L, Murugavelu M, Loganathan B, Karthikeyan B (2013) Photocatalytic effect of Ag and Ag/Pt doped silicate non crystalline material on methyl violet—experimental and theoretical studies. J Non-Cryst Solids 368:23–28

    Article  Google Scholar 

  27. Badr Y, Mahmoud MA (2007) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solids 68:413–419

    Article  Google Scholar 

  28. Karthikeyan B, Natanapatham L, Senthilvelan S, Chandraboss VL, Murugavelu M (2013) Synthesis and characterization of nano Ag/Pt and methyl violet co-doped sol–gel porous material. Mater Sci Semicond Process 16:23–28

    Article  Google Scholar 

  29. Gupta AK, Pal A, Sahoo C (2006) Photocatalytic degradation of a mixture of crystal violet (basic violet 3) and methyl red dye in aqueous suspensions using Ag+ doped TiO2. Dyes Pigments 69:224–232

    Article  Google Scholar 

  30. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  31. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solid: principle, methodology, and applications. Academic Press, San Diego

    Google Scholar 

  32. Sreethawong T, Ngamsinlapasathian S, Yoshikawa S (2012) Surfactant-aided sol–gel synthesis of mesoporous-assembled TiO2–NiO mixed oxide nanocrystals and their photocatalytic azo dye degradation activity. Chem Engg J 192:292–300

    Article  Google Scholar 

  33. Lee CK, Lee SL (1996) Heterogeneity of surfaces and materials, as reflected in multifractal analysis. Heterogen Chem Rev 3:269–302

    Article  Google Scholar 

  34. Yoshida H, Murata C, Hattori T (2000) Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen. J Catal 194:364–372

    Article  Google Scholar 

  35. Skuja L (1992) Time-resolved low temperature luminescence of non-bridging oxygen hole centers in silica glass. Solid State Commun 84:613–616

    Article  Google Scholar 

  36. Fu G, Cai W, Gan Y, Jia J (2004) An ambience-induced optical absorption peak for Au/SiO2 mesoporous assembly. Chem Phys Lett 385:15–19

    Article  Google Scholar 

  37. Sclafani A, Herrmann JM (1998) Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A Chem 113:181–188

    Article  Google Scholar 

  38. Senthilvelan S, Chandraboss VL, Karthikeyan B, Natanapatham L, Murugavelu M (2013) TiO2, ZnO and nanobimetallic silica catalyzed photodegradation of methyl green. Mater Sci Semicond Process 16:185–192

    Article  Google Scholar 

  39. Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725

    Article  Google Scholar 

  40. Zhang N, Liu S, Xu YJ (2012) Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4:2227–2238

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. B. Shanthi, (Centralized Instrumentation Service Laboratory, Department of Physics, Annamalai University) for assistance with AFM analysis. FE-SEM images were recorded at Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai. The authors are highly thankful to Prof. T. Pradeep for HR-TEM images. UV–Vis-DRS data were recorded at the University of Hyderabad. We also thank Dr. B. Subash and Mr. A. Narayanan for N2 sorption measurements. Author B. L wishes to acknowledge the University Grants Commission (UGC)-Basic Sciences Research (BSR)-Special Assistant Programme (SAP) Fellowship from the UGC, New Delhi, India.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, B., Chandraboss, V.L., Murugavelu, M. et al. Synthesis and characterization of multimetallic-core and siliceous-shell Au/Pt/Ag@SiO2 sol–gel derived nanocomposites. J Sol-Gel Sci Technol 74, 1–14 (2015). https://doi.org/10.1007/s10971-014-3564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3564-5

Keywords

Navigation