Skip to main content
Log in

Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The main goal of this work is to modify surface of nano CaCO3 with silica by an elegant approach of sol–gel method and also to compare the influence of sol–gel modified nano CaCO3 with unmodified nano CaCO3 in the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites. The surface modification of nano CaCO3 is characterized by Fourier transform infrared spectra and Field emission scanning electron microscopy. The modified nano CaCO3 causes significant improvement in the maximum rheometric torque (R) and cure rate index value of NBR nanocomposites in comparison to unmodified nano CaCO3. More importantly, incorporation of surface modified nano CaCO3 provides substantial enhancement in the mechanical properties of NBR nanocomposites and at 4 phr (parts per hundred parts of rubber) filler loading level tensile strength of modified nano CaCO3 filled NBR vulcanizate shows a large increment by 37.33 % compare to that of unmodified nano CaCO3 filled NBR vulcanizate. Thermogravimetric analysis reveals that sol–gel modified nano CaCO3 delivers greater thermal stability in NBR nanocomposites than unmodified nano CaCO3. The fantastic enrichment in the cure, mechanical and thermal properties of NBR nanocomposites containing surface modified nano CaCO3 will be the part of great interest for rubber researcher regarding the broad application of sol–gel modified nano CaCO3 as important filler in rubber industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mishra S, Shimpi NG (2005) J Appl Polym Sci 98:2563–2571

    Article  Google Scholar 

  2. Mishra S, Shimpi NG, Patil UD (2007) J Polym Res 14:449–459

    Article  Google Scholar 

  3. Mishra S, Shimpi NG (2007) Polym Plast Technol Eng 47:72–81

    Article  Google Scholar 

  4. Mishra S, Shimpi NG, Mali AD (2011) J Polym Res 18:1715–1724

    Article  Google Scholar 

  5. Mishra S, Shimpi NG, Mali AD (2012) Polym Adv Technol 23:236–246

    Article  Google Scholar 

  6. Deng CM, Chen M, Ao NJ, Yan D, Zheng ZQ (2006) J Appl Polym Sci 101:3442–3447

    Article  Google Scholar 

  7. Zhang A, Zhao G, Guan Y, Chen G (2010) Polym Compos 31:1593–1602

    Article  Google Scholar 

  8. Han FN, Zhou DJ, Tang XD (2011) Appl Mech Mater 99–100:1035–1038

    Article  Google Scholar 

  9. Jin FL, Park SJ (2008) Mater Sci Eng A 478:406–408

    Article  Google Scholar 

  10. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Compos Sci Technol 62:1327–1340

    Article  Google Scholar 

  11. Demjén Z, Pukánszky B, Földes E, Nagy J (1997) J Colloid Interface Sci 190:427–436

    Article  Google Scholar 

  12. Yan H, Sun K, Zhang Y, Zhang Y (2005) Polym Test 24:32–38

    Article  Google Scholar 

  13. Suzuki N, Ito M, Ono S (2005) J Appl Polym Sci 95:74–81

    Article  Google Scholar 

  14. Kapgate BP, Das C, Das A, Basu D, Reuter U, Heinrich G (2012) J Sol Gel Sci Technol 63:501–509

    Article  Google Scholar 

  15. Roy K, Alam MN, Mandal SK, Debnath SC (2014) J Sol Gel Sci Technol 70:378–384

    Article  Google Scholar 

  16. Rahman IA, Jafarzadeh M, Sipaut CS (2011) J Sol Gel Sci Technol 59:63–72

    Article  Google Scholar 

  17. Tong YH, Liu YC, Lu SX, Dong L, Chen SJ, Xiao ZY (2004) J Sol Gel Sci Technol 30:157–161

    Article  Google Scholar 

  18. Aegerter MA, Almeida R, Soutar A, Tadanaga K, Yang H, Watanabe T (2008) J Sol Gel Sci Technol 47:203–236

    Article  Google Scholar 

  19. Du GH, Liu ZL, Xia X, Chu Q, Zhang SM (2006) J Sol Gel Sci Technol 39:285–291

    Article  Google Scholar 

  20. Gamelas JAF, Lourenco AF, Ferreira PJ (2011) J Sol Gel Sci Technol 59:25–31

    Article  Google Scholar 

  21. Nekhamanurak B, Patanathabutr P, Hongsriphan N (2012) Int J Appl Phys Math 2:98–103

    Article  Google Scholar 

  22. Sahoo S, Maiti M, Ganguly A, George JJ, Bhowmick AK (2007) J Appl Polym Sci 105:2407–2415

    Article  Google Scholar 

  23. Yan S, Yin J, Yang J, Chen X (2006) Mater Lett 61:2683–2686

    Article  Google Scholar 

  24. Ramesan MT, Kuriakose B, Pradeep P, Alex R, Varghese S (2001) Eur Polym J 37:719–728

    Article  Google Scholar 

  25. Poh BT, Kwok CP, Lim GH (1995) Eur Polym J 31:223–226

    Article  Google Scholar 

  26. Mishra S, Shimpi NG (2005) J Sci Ind Res 64:744–751

    Google Scholar 

  27. Fernandez SS, Kunchandy S (2013) Orient J Chem 29:219–226

    Article  Google Scholar 

  28. Ishak ZAM, Bakar AA (1995) Eur Polym J 31:259–269

    Article  Google Scholar 

  29. Mishra S, Shimpi NG, Patil UD (2007) J Polym Res 14:449–459

    Article  Google Scholar 

  30. Mishra S, Shimpi NG, Mali AD (2011) J Polym Res 18:1715–1724

    Article  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge DST-PURSE programme, Govt. of India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Alam, M.N., Mandal, S.K. et al. Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites. J Sol-Gel Sci Technol 73, 306–313 (2015). https://doi.org/10.1007/s10971-014-3530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3530-2

Keywords

Navigation