Skip to main content
Log in

Electrochemical characterization of sodium and potassium doped lanthanum–titanium mixed oxides prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Varying amounts of Na and K doped lanthanum–titanium oxides were synthesized by gel entrapment technique. These ceramics were characterized by X-ray diffraction. Microstructural investigations revealed grain growth in the doped material compared to undoped sample. Dielectric relaxations of these compounds were investigated in the temperature range 250–900 °C. A high degree of dispersion of the permittivity of un-doped lanthanum–titanium oxide and K and Na doped lanthanum–titanium oxide was observed in the frequency range <100 kHz which was attributed to oxygen vacancies. An increase in the permittivity values were observed with 1 % Na and K doped samples. The permittivity values further deteriorated with the dopant concentration. Using the Cole–Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The dielectric loss was found to decrease by doping K in lanthanum–titanium oxide matrix. The dc conductivity studies showed that a temperature dependent hopping type mechanism is responsible for electrical conduction in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nanamatsu S, Kimura M (1974) Ferroelectric properties of Ca2Nb2O7 single crystal. J Phys Soc Jpn 36:1495

    Article  Google Scholar 

  2. Schmalle HW, Williams T, Reller A, Linden A, Bednorz JG (1993) The twin structure of La2Ti2O7: X-ray and transmission electron microscopy studies. Acta Crystallogr B 49:235–244

    Article  Google Scholar 

  3. Lichtenberg F, Herrnberger A, Wiedenmann K, Mannhart J (2001) Synthesis of perovskite-related layered A n B n O3n+2 = ABO X type niobates and titanates and study of their structural, electric and magnetic properties. J Prog Solid State Chem 29(1–2):1–70

    Article  Google Scholar 

  4. Zhong YJ, Azough F, Freer R (1995) The effect of La2Ti3O9 second phase on the microstructure and dielectric properties of La2Ti2O7 ceramics. J Eur Ceram Soc 15:255–263

    Article  Google Scholar 

  5. Kim WS, Ha SM, Yun S, Park H (2002) Microstructure and electrical properties of Ln2Ti2O7 (Ln = La, Nd). Thin Solid Films 420–421:575–578

    Google Scholar 

  6. Fasquelle D, Carru JC, Le Gendre L, Le Paven C, Pinel J, Chevir´e F, Tessier F, Marchand R (2005) Lanthanum–titanate ceramics: electrical characterizations in large temperature and frequency ranges. J Eur Ceram Soc 25:2085–2088

    Article  Google Scholar 

  7. Takahashi J, Kageyama K, Hayashi T (1991) Dielectric properties of double-oxide ceramics in the system Ln2O3–TiO2 (Ln = La, Nd and Sm). Jpn J Appl Phys 30:2354–2358

    Article  Google Scholar 

  8. Nanamatsu S, Kimura M, Doi K, Matsushita S, Yamada N (1974) A new ferroelectric: La2Ti2O7. Ferroelectrics 8:511–513

    Article  Google Scholar 

  9. Zakharov NA, Krikorov VS, Kustov EF, Stefanovich Yu S (1978) New non-linear crystals in the A2B2O7 series. Status Solidi (A) 50:K13–K16

    Article  Google Scholar 

  10. Malkhasyan SS, Stefanovich YuS, Nazarenko BP, Dubovik MF, Venevtsev YuN (1979) Nonlinear optical properties of ferroelectrics Sr2Nb2O7 and La2Ti2O7 with layered structure. Sov Phys Crystallogr 24:297–300

    Google Scholar 

  11. Zakharov NA, Stefanovich Yu S, Kustov EF, Venevtsev Yu N (1980) Krist Tech 15:29–33

    Article  Google Scholar 

  12. Park SM, Park JK, Kim CH, Park HD, Jang HG (2001) Photoluminescence behavior of Al3+, Pr3+ doped perovskite-type La2/3TiO3 and pyrochlore-type La2Ti2O7. J Korean Ceram Soc 38:806–810

    Google Scholar 

  13. Diallo PT, Boutinaud P, Mahiou R (2002) Anti-stokes luminescence and site selectivity in La2Ti2O7:Pr3+. J Alloys Compd 341:139–143

    Article  Google Scholar 

  14. Shangguan W, Yoshida A (2002) Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J Phys Chem B 106:12227–12230

    Article  Google Scholar 

  15. Yoshimure J, Ebina Y, Kondo J, Domen K (1993) Visible light induced photocatalytic behavior of a layered perovskite type niobate, RbPb2Nb3O10. J Phys Chem 97:1970–1973

    Article  Google Scholar 

  16. Kim Y II, Salim S, Huq MJ, Mallouk TE (1991) Visible light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J Am Chem Soc 113:9561–9563

    Article  Google Scholar 

  17. Sandstrom MM, Fuierer P (2003) Sol–gel synthesis of textured lanthanum–titanate thin films. J Mater Res 18:357–362

    Article  Google Scholar 

  18. Prasadarao AV, Selvaraj U, Komarneni S, Bhalla AS (1992) Sol–gel synthesis of Ln2(Ln = La, Nd)Ti2O7. J Mater Res 7:2859–2863

    Article  Google Scholar 

  19. Shao Z, Saitzek S, Roussel P, Huve M, Desfeux R, Mentre O, Abraham F (2009) An easy sol–gel route for deposition of oriented Ln2Ti2O7 (Ln = La, Nd) films on SrTiO3 substrate. J Cryst Growth 311:4134–4141

    Article  Google Scholar 

  20. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of La2M2O7 (M = Ti, Zr) powders. Mater Res Bull 33:409–417

    Article  Google Scholar 

  21. Kamat RV, Pillai KT, Vaidya VN, Sood DD (1996) Synthesis of yttrium aluminium garnet by the gel entrapment technique using hexamine. Mater Chem Phys 46:67–71

    Article  Google Scholar 

  22. Nobre MAL, Lanfredi S (2003) Dielectric spectroscopy on Bi3Zn2Sb3O14 ceramic: an approach based on the complex impedance. J Phys Chem Solids 64:2457–2464

    Article  Google Scholar 

  23. Du HL, Yao X (2003) Effects of Sr substitution on dielectric characteristics in Bi1.5ZnNb1.5O7 ceramics. Mater Sci Eng, B 99:437–440

    Article  Google Scholar 

  24. Abdeen AM (1999) Dielectric behaviour in Ni–Zn ferrites. J Magn Magn Mater 192:121–129

    Article  Google Scholar 

  25. Kurumada M, Hara H, Iguchi E (2005) Oxygen vacancies contributing to intragranular electrical conduction of yttria-stabilized zirconia (YSZ) ceramics. Acta Mater 53:4839–4846

    Article  Google Scholar 

  26. Yamamura H, Takeda S, Kakinuma K (2007) Dielectric relaxations in the Ce1−xNdxO2−δ system. Solid State Ion 178:1059–1064

    Article  Google Scholar 

  27. Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem 74:125–143

    Article  Google Scholar 

  28. Gerhardt R (1994) Dielectric and impedance spectroscopy revisited: distinguishing localized relaxation from long range conductivity. J Phys Chem Solids 55:1491–1506

    Article  Google Scholar 

  29. Kumar A, Manna I (2008) Ionic conductivity and electrical relaxation of nanocrystalline scandia-stabilized c-zirconia using complex impedance analysis. Phys B 403:2298–2305

    Article  Google Scholar 

  30. Irvine JTC, Sinclair DC, West AR (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2:132–138

    Article  Google Scholar 

  31. Macdonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems, Chap. 4. Wiley, New York

    Google Scholar 

  32. Liu ZR, Gu BL, Zhang XW (2000) Effects of ac field amplitude on the dielectric susceptibility of relaxors. Phys Rev B 62:228–236

    Article  Google Scholar 

  33. Saha S, Krupanidhi SB (2001) AC and DC conductivity studies in pulsed laser ablated (Ba, Sr)TiO3 thin films. Integr Ferroelectr 33:353–361

    Article  Google Scholar 

  34. Saha S, Krupanidhi SB (2000) Dielectric response in pulsed laser ablated (Ba, Sr)TiO3 thin films. J App Phys 87:849–854

    Article  Google Scholar 

  35. Smyth DM (1996) Defect structure in perovskite titanates. Curr Opin Solid State Mater Sci 1:692–697

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to Dr. S. K. Aggarwal, Head, Fuel Chemistry Division, BARC for his constant encouragement. We also express our gratitude to Dr. N. D. Dahale of FCD, BARC for his support in carrying out the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh V. Pai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, R.V., Bhattacharya, S., Mukerjee, S.K. et al. Electrochemical characterization of sodium and potassium doped lanthanum–titanium mixed oxides prepared by sol–gel method. J Sol-Gel Sci Technol 72, 455–463 (2014). https://doi.org/10.1007/s10971-014-3456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3456-8

Keywords

Navigation