Skip to main content
Log in

Synthesis and investigation of oxygen deficiency effect on electric properties of La0.75Ba0.10Sr0.15FeO2.875-δ (δ = 0.00, 0.125 and 0.25) ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, La0.75Ba0.10Sr0.15FeO2.875-δ oxygen-deficient ferrites with δ = 0.00, 0.125 and 0.25 were synthesized by sol–gel method. The physical characterization has been carried out by X-ray diffraction, scanning electron microscope SEM, Raman spectroscopy, and complex impedance. All samples are formed in orthorhombic crystal symmetry with Pnma space group. Synthesized compounds have nanocrystallite size of 32–46 nm. Raman spectrum shows the oxygen vacancy effect on the tilt and stretching phonon modes. Electric properties were investigated in the framework of impedance and electric conductivity. The complex impedance was measured over a wide range of temperatures (300–380 K) and frequencies (40 Hz–1 MHz). The electrical measurements indicate semiconductor behavior for the three compositions and emphasize the evidence of contribution of grain boundaries in the transport properties. The ac conductivity curves obey the Jonsher universal power law and are assigned to hopping conduction mechanism. It is found that the values of activation energy, estimated from the conductivity analysis, are in the same order with those deduced from relaxation process. Such result proves that both processes, conduction and relaxation, are related to the same defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.H. Lone, J. Aslam, N.R. Radwan, A.H. Bashal, A.F. Ajlouni, A. Akhter, Nanoscale Res. Lett. 14, 1–22 (2019)

    CAS  Google Scholar 

  2. P.A. Ghadage, U.R. Ghodake, J.Y. Patil, S.S. Suryavanshi, IOP Conf. Ser. 360, 012063 (2018)

    Google Scholar 

  3. N.N. Toana, S. Saukko, V. Lanttoa, Phys B. 327, 297 (2003)

    Google Scholar 

  4. W.C. Koehler, E.O. Wollan, M.K. Wilkinson, Phys. Rev. 118, 58–70 (1960)

    CAS  Google Scholar 

  5. S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Mater. Lett. 64, 415–418 (2010)

    CAS  Google Scholar 

  6. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338–1345 (2011)

    CAS  Google Scholar 

  7. S.M. Khetrea, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, S.R. Bamane, Adv. Appl. Sci. Res. 2, 503–511 (2011)

    Google Scholar 

  8. K.D. Chandrasekhar, S. Mallesh, J.K. Murthy, A.K. Das, A. Venimadhav, Phys. B 448, 304–311 (2014)

    Google Scholar 

  9. S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Mater. Res. Bull. 67, 118–125 (2015)

    CAS  Google Scholar 

  10. MdG Masud, B.K. Chaudhuri, H.D. Yang, Phys. D. 44, 255403 (2011)

    Google Scholar 

  11. G. Chern, W.K. Hsieh, M.F. Tai, K.S. Hsung, Phys. Rev. B. 58, 1252 (1998)

    CAS  Google Scholar 

  12. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, Mater. Sci. 30, 8457–8470 (2019)

    CAS  Google Scholar 

  13. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, Phys. Chem. Solids 117, 1–12 (2018)

    CAS  Google Scholar 

  14. N. Chihaoui, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Grac, L.C. Costa, Alloys Compd. 577, 483–487 (2013)

    Google Scholar 

  15. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, K. Nomenyo, G. Lerondel, Mater. Sci. 30, 3349–3358 (2019)

    CAS  Google Scholar 

  16. H. Trabelsi, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, K. Khirouni, Physica E. 99, 75–81 (2018)

    CAS  Google Scholar 

  17. A. Guinier, In: X. Dunod (ed) Theorie et Technique de la Radiocristallographie, 3rd ed (Dunod, Paris, 1964) 482.

  18. Y. Du, Z.X. Cheng, X.L. Wang, S.X. Dou, Appl. Phys. 108, 093914 (2010)

    Google Scholar 

  19. M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel, Phys. Rev B. 94, 214103 (2016)

    Google Scholar 

  20. M. Popa, J. Frantti, M. Kakihana, Solid State. Ion. 154–155, 135–141 (2002)

    Google Scholar 

  21. M. Romero, R.W. Gómeza, V. Marquina, J.L. Pérez-Mazariego, R. Escamilla, Phys. B 443, 90–94 (2014)

    CAS  Google Scholar 

  22. J. Andreasson, J. Holmlund, R. Rauer, M. Käll, L. Börjesson, C.S. Knee, Phys. Rev. B. 78, 235103–235113 (2008)

    Google Scholar 

  23. L. Martin-Carron, A. de Andrés, Eur. Phys. B. 22, 11–16 (2001)

    CAS  Google Scholar 

  24. C. Jagadeeshwaran, A.P. Selvadurai, V. Pazhanivelu, R. Murugaraj, IJIRSE 2, 2347–3207 (2013)

    Google Scholar 

  25. F.I.H. Rhoumal, A. Dhahri, N. Farhat, J. Dhahri, K. Khirouni, EPJ Web Conf. EDP Sci. 29, 00023 (2012)

    Google Scholar 

  26. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Superlattice Microstruct. 117, 260–270 (2018)

    CAS  Google Scholar 

  27. S.B. Amor, A. Benali, M. Bejar, E. Dhahri, K. Khirouni, M.A. Valente, M.P.F. Graça, F. Al-Turjman, J. Rodriguez, A. Radwan, Mol. Struct. 1184, 298–304 (2019)

    CAS  Google Scholar 

  28. R. Jemaï, R. Lahouli, S. Hcini, H. Rahmouni, K. Khirouni, Alloys Compd. 705, 340–348 (2017)

    Google Scholar 

  29. C. Bharti, T.P. Sinha, Phys. B 406, 1827–1832 (2011)

    CAS  Google Scholar 

  30. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Status Solidi A. 201, 588–595 (2004)

    CAS  Google Scholar 

  31. A.K. Jonscher, Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  32. K. Lily, K. Prasad, R.N.P. Choudhary, Alloys Compd. 453, 325–331 (2008)

    CAS  Google Scholar 

  33. K.S. Cole, R.H. Cole, Chem. Phys. 10, 98–105 (1942)

    CAS  Google Scholar 

  34. F.S.H. Abu-Samaha, M.I.M. Ismail, Mat. Sci. Semicond. Proc. 19, 50–56 (2014)

    CAS  Google Scholar 

  35. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Ceram. Int. 45, 16458–16465 (2019)

    CAS  Google Scholar 

  36. M.A. Valente, M. Peres, C. Nico, T. Monteiro, M.P.F. Graça, A.S.B. Sombra, C.C. Silva, Opt. Mater. 33, 1964–1969 (2011)

    CAS  Google Scholar 

  37. A. Dutta, C. Bharti, T.P. Sinha, Phys. B 403, 3389–3393 (2008)

    CAS  Google Scholar 

  38. K. Schmale, M. Daniels, A. Buchheit, M. Grünebaum, L. Haase, S. Koops, H. Wiemhöfer, Electron. Soc 160, 1081–1087 (2013)

    Google Scholar 

  39. J.E. Bauerle, Phys. Chem. Solids. 30, 2657–2670 (1969)

    CAS  Google Scholar 

  40. A. Shukla, R.N.P. Choudhary, A.K. Thakur, Phys. Chem. Solids. 70, 1401–1407 (2009)

    CAS  Google Scholar 

  41. S. Kallel, A. Nasri, N. Kallel, H. Rahmouni, O. Peña, K. Khirouni, M. Oumezzine, Phys. B 406, 2172–2176 (2011)

    CAS  Google Scholar 

  42. D. Johnson, ZPlot, ZView Electrochemical Impedance Software, Version 2.3 b (Scribner Associates Inc, North Carolina, 2000)

    Google Scholar 

  43. N. Chihaoui, R. Dhahri, M. Bejar, E. Dhahri, L.C. Costa, M.P.F. Graça, Solid State Commun. 151, 1331–1335 (2011)

    CAS  Google Scholar 

  44. H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, K. Khirouni, P.R. Prezas, B.M.G. Melo, M.A. Valente, M.P.F. Garça, Alloys Compd. 723, 894–903 (2017)

    CAS  Google Scholar 

  45. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  46. R. Tlili, M. Khelil, M. Bejar, M. Bekri, E. Dhahri, K. Khirouni, Ceram. Int. 42, 11256–11258 (2016)

    CAS  Google Scholar 

  47. B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 10468–10477 (2017)

    Google Scholar 

  48. K.P. Padmasree, D.K. Kanchan, A.R. Kulkami, Solid. State. Ion. 177, 475–482 (2006)

    CAS  Google Scholar 

  49. H. Felhi, R. Lahouli, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, Mol. Struct. 1179, 1–10 (2019)

    CAS  Google Scholar 

  50. S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, Appl. Phys. 74, 931 (1993)

    CAS  Google Scholar 

  51. S.R. Elliott, Philos. Mag. B. 37, 553–560 (1978)

    CAS  Google Scholar 

  52. S.R. Elliot, Adv. Phys. 36, 135–217 (1987)

    Google Scholar 

  53. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, Alloys Compd. 653, 506–512 (2015)

    CAS  Google Scholar 

  54. O. Ajili, B. Louati, K. Guidara, Mater. Sci. 29, 8649–8659 (2018)

    CAS  Google Scholar 

  55. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, Phys. Chem. A. 116, 1051–1058 (2012)

    CAS  Google Scholar 

Download references

Funding

Funding was provided by University of sfax.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bouzayen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzayen, M., Dhahri, R., Benali, A. et al. Synthesis and investigation of oxygen deficiency effect on electric properties of La0.75Ba0.10Sr0.15FeO2.875-δ (δ = 0.00, 0.125 and 0.25) ferrites. J Mater Sci: Mater Electron 32, 13000–13013 (2021). https://doi.org/10.1007/s10854-020-04379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04379-3

Navigation