Skip to main content
Log in

Rapid concentration method for radiocesium in seawater using AMP-PAN resin and sample loading equipment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Here, we present a method for concentrating radiocesium in seawater using ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) resin using custom-made sample-loading equipment. It was designed to reduce analytical time and labor with eight peristaltic pumps connected in parallel with eight columns, each packed with AMP-PAN. Eighty liters of seawater containing radiocesium were concentrated to 0.01 L in 6 h with the proposed method and Cs recovery was > 85%. The minimum detectable activity was 0.2 mBq L–1 at 160,000-s measurement with a high-purity germanium detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Buesseler K, Aoyama M, Fukasawa M (2011) Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ Sci Technol 45(23):9931–9935

    Article  CAS  PubMed  Google Scholar 

  2. Hirose K, Povinec PP (2019) 137Cs and 90Sr in surface waters of the Sea of Japan: variations and the Fukushima Dai-ichi Nuclear power plant accident impact. Mar Pollut Bull 146:645–652

    Article  CAS  PubMed  Google Scholar 

  3. Hirose K, Povinec PP (2020) 90Sr and 137Cs as tracers of oceanic eddies in the sea of Japan/East sea. J Environ Radioactiv 216:106179

    Article  CAS  Google Scholar 

  4. Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the Coast off Japan derived from the Fukushima Dai-ichi nuclear accident. Environ Sci Technol 50(1):173–180

    Article  CAS  PubMed  Google Scholar 

  5. Kenyon JA, Buesseler KO, Casacuberta N, Castrillejo M, Otosaka S, Masqué P, Drysdale JA, Pike SM, Sanial V (2020) Distribution and evolution of Fukushima Dai-ichi derived 137Cs, 90Sr, and 129I in surface seawater off the Coast of Japan. Environ Sci Technol 54(23):15066–15075

    Article  CAS  PubMed  Google Scholar 

  6. Kameník J, Dulaiova H, Buesseler KO, Pike SM, Št’astná K (2013) Cesium-134 and 137 activities in the central North Pacific Ocean after the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences 10(9):6045–6052

    Article  Google Scholar 

  7. Ding D, Zhang Z, Chen R, Cai T (2017) Selective removal of cesium by ammonium molybdophosphate–polyacrylonitrile bead and membrane. J Hazard Mater 324:753–761

    Article  CAS  PubMed  Google Scholar 

  8. Smit JVR (1958) Ammonium salts of the heteropolyacids as cation exchangers. Nature 181(4622):1530–1531

    Article  CAS  Google Scholar 

  9. Fu C, Tan Z, Cheng J, Xie J, Dai X, Du Y, Zhu S, Wang S, Yan M (2023) Effective removal of cesium by ammonium molybdophosphate–polyethylene glycol magnetic nanoparticles. J Environ Chem Eng 11(5):110544

    Article  CAS  Google Scholar 

  10. Deng F, He J, Ling F, Yu W, Men W, Wang F (2020) Effect of settling time on the adsorption of 137Cs onto AMP in the AMP-coprecipitation method. Mar Pollut Bull 161:111713

    Article  CAS  PubMed  Google Scholar 

  11. Kurihara M, Yasutaka T, Aono T, Ashikawa N, Ebina H, Iijima T, Ishimaru K, Kanai R, Zi K, Konnai Y, Kubota T, Maehara Y, Maeyama T, Okizawa Y, Ota H, Otosaka S, Sakaguchi A, Tagomori H, Taniguchi K, Tomita M, Tsukada H, Hayashi S, Lee S, Miyazu S, Shin M, Nakanishi T, Nishikiori T, Onda Y, Shinano T, Tsuji H (2019) Repeatability and reproducibility of measurements of low dissolved radiocesium concentrations in freshwater using different pre-concentration methods. J Radioanal Nucl Chem 322(2):477–485

    Article  CAS  Google Scholar 

  12. Aoyama M, Hirose K, Miyao T, Igarashi Y (2000) Low level 137Cs measurements in deep seawater samples. Appl Radiat Isot 53(1):159–162

    Article  CAS  PubMed  Google Scholar 

  13. Abbas TK, Abdulghafoor TT, Aziz AH, Al-Saadi S, Nafae TM, Rashid KT, Alsalhy QF (2023) Investigation of the segregation of radiocesium from contaminated aqueous waste using AMP-PAN extraction chromatography. Energies 16(18):6544

    Article  CAS  Google Scholar 

  14. Pike SM, Buesseler KO, Breier CF, Dulaiova H, Stastna K, Sebesta F (2013) Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J Radioanal Nucl Chem 296(1):369–374

    Article  CAS  Google Scholar 

  15. Kameník J, Dulaiova H, Šebesta F, Šťastná K (2013) Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J Radioanal Nucl Chem 296(2):841–846

    Article  Google Scholar 

  16. Kim G, Choi S-D, Lim J-M, Kim H (2023) Strontium-90 levels in seawater southeast of Jeju Island during 2021–2023. Mar Pollut Bull 193:115258

    Article  CAS  PubMed  Google Scholar 

  17. Šebesta F, Štefula V (1990) Composite ion exchanger with ammonium molybdophosphate and its properties. J Radioanal Nucl Chem 140(1):15–21

    Article  Google Scholar 

  18. Tranter TJ, Herbst RS, Todd TA, Olson AL, Eldredge HB (2002) Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv Environ Res 6(2):107–121

    Article  CAS  Google Scholar 

  19. Brewer KN, Todd TA, Wood DJ, Tullock PA, Sebesta F, John J, Motl A (1999) AMP-PAN column tests for the removal of 137Cs from actual and simulated INEEL high-activity wastes. Czech J Phys 49(1):959–964

    Article  CAS  Google Scholar 

  20. KINS (2021) Marine environmental radioactivity survey. Korea Institute of Nuclear Safety. KINS/ER-092, vol.17 Daejeon

Download references

Funding

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 00231329).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis, and Investigation: Gahyun Kim and Hyuncheol Kim, Original draft preparation: Gahyun Kim, Reviewing: Jong-Myoung Lim, Reviewing and editing, Funding acquisition: Hyuncheol Kim.

Corresponding author

Correspondence to Hyuncheol Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Lim, JM. & Kim, H. Rapid concentration method for radiocesium in seawater using AMP-PAN resin and sample loading equipment. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09465-y

Keywords

Navigation