Skip to main content
Log in

Application of NOBIAS Chelate-PA 1 Resin to the Determination of Zirconium, Niobium, Hafnium, and Tantalum in Seawater

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Zirconium, niobium, hafnium, and tantalum are dissolved in seawater as hydroxide complexes at a concentration as low as 0.01–370 pmol kg−1 and are expected to be potential tracers for water masses in the ocean. Herein, we report a new analytical method for the multielemental determination of the four elements on the basis of column extraction, using a NOBIAS Chelate-PA 1 resin that contains ethylenediaminetriacetic acid groups. The elements were collected on the resin from seawater that had been added with 3.8 mM HF at pH 6.0, and were eluted with 5 M HF. After the evaporation of 5 M HF, the elements were dissolved in 0.5 M HNO3−6 mM H2SO4−1 mM HF and were determined by a high resolution ICP-MS, using a calibration curve method. We optimized the procedure to achieve quantitative recoveries and low backgrounds for the elements, although the complex formation between the metal ions and NOBIAS Chelate-PA 1 was decelerated by the seawater matrix. The method was tested by investigating the seawater samples of reference material and those collected from the depths at a station in the western North Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Turner, M. Whitfield, and A. G. Dickson, Geochim. Cosmochim. Acta, 1981, 45, 855.

    Article  CAS  Google Scholar 

  2. R. H. Byrne, Geochem. Trans., 2002, 3, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. A. Koschinsky and J. R. Hein, Mar. Geol., 2003, 198, 331.

    Article  CAS  Google Scholar 

  4. M. L. Firdaus, T. Minami, K. Norisuye, and Y. Sohrin, Nat. Geosci., 2011, 4, 227.

    Article  CAS  Google Scholar 

  5. M. L. Firdaus, A. S. Mashio, T. Kim, R. Muhammad, J. A. McAlister, H. Obata, T. Gamo, and R. Khaydarov, Geochem. J., 2018, 52, 427.

    Article  CAS  Google Scholar 

  6. M. L. Firdaus, A. S. Mashio, H. Obata, J. A. McAlister, and K. J. Orians, Deep Sea Res., Part I, 2018, 140, 128.

    Article  CAS  Google Scholar 

  7. M. L. Firdaus, K. Norisuye, Y. Nakagawa, S. Nakatsuka, and Y. Sohrin, J. Oceanogr., 2008, 64, 247.

    Article  CAS  Google Scholar 

  8. L. V. Godfrey, W. M. White, and V. J. M. Salters, Geochim. Cosmochim. Acta, 1996, 60, 3995.

    Article  CAS  Google Scholar 

  9. L. V. Godfrey, B. Zimmermann, D. C. Lee, R. L. King, J. D. Vervoort, R. M. Sherrell, and A. N. Halliday, Geochem. Geophys. Geosyst., 2009, 10, Q08015.

    Article  Google Scholar 

  10. B. A. McKelvey and K. J. Orians, Geochim. Cosmochim. Acta, 1993, 57, 3801.

    Article  CAS  Google Scholar 

  11. B. A. McKelvey and K. J. Orians, Mar. Chem., 1998, 60, 245.

    Article  CAS  Google Scholar 

  12. S. Poehle and A. Koschinsky, Mar. Chem., 2017, 188, 18.

    Article  CAS  Google Scholar 

  13. Y. Sohrin, Y. Fujishima, K. Ueda, S. Akiyama, K. Mori, H. Hasegawa, and M. Matsui, Geophys. Res. Lett., 1998, 25, 999.

    Article  CAS  Google Scholar 

  14. A. Filippova, M. Frank, M. Kienast, J. Rickli, E. Hathorne, I. M. Yashayaev, and K. Pahnke, Geochim. Cosmochim. Acta, 2017, 199, 164.

    Article  CAS  Google Scholar 

  15. Y. Sohrin and K. W. Bruland, TrAC, Trends Anal. Chem., 2011, 30, 1291.

    Article  CAS  Google Scholar 

  16. M. L. Firdaus, K. Norisuye, T. Sato, S. Urushihara, Y. Nakagawa, S. Umetani, and Y. Sohrin, Anal. Chim. Acta, 2007, 583, 296.

    Article  CAS  PubMed  Google Scholar 

  17. H. Dierssen, W. Balzer, and W. M. Landing, Mar. Chem., 2001, 73, 173.

    Article  CAS  Google Scholar 

  18. Y. Sohrin, S. Urushihara, S. Nakatsuka, T. Kono, E. Higo, T. Minami, K. Norisuye, and S. Umetani, Anal. Chem., 2008, 80, 6267.

    Article  CAS  PubMed  Google Scholar 

  19. H. Takata, K. Tagami, T. Aono, and S. Uchida, At. Spectrosc., 2009, 30, 10.

    CAS  Google Scholar 

  20. D. V. Biller and K. W. Bruland, Mar. Chem., 2012, 130–131, 12.

    Article  Google Scholar 

  21. E. C. Hathorne, B. Haley, T. Stichel, P. Grasse, M. Zieringer, and M. Frank, Geochem. Geophys. Geosyst., 2012, 13, Q01020.

    Article  Google Scholar 

  22. X. J. Yang and C. Pin, Anal. Chim. Acta, 2002, 458, 375.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by The Japan Society for the Promotion of Science (JSPS) KAKENHI grants (Grant Nos. JP24241004, JP15H0127, and 19H01148) and by Mitsumasa Ito Memorial Research Grant from the Research Institute for Oceanochemistry Foundation. The authors thank the crew, technicians, students, and scientists onboard the KH-12-4 cruise for their assistance with the seawater sampling. We express our appreciation regarding the preliminary experiments carried out by graduate student Hiroaki Fujisaka. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Sohrin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Tsujisaka, M., Zheng, L. et al. Application of NOBIAS Chelate-PA 1 Resin to the Determination of Zirconium, Niobium, Hafnium, and Tantalum in Seawater. ANAL. SCI. 35, 1015–1020 (2019). https://doi.org/10.2116/analsci.19P069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P069

Keywords

Navigation