Skip to main content
Log in

Application of membrane technology in the treatment of waste liquid containing radioactive materials

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The growing application of radioactive materials in various industries, such as nuclear power, oil and gas, and research labs, has led to an increase in the amount of radioactive material present in waste liquids. This poses a risk to both the environment and human health through exposure to radiation. Current methods for treating these types of waste liquids, aside from membrane technology, are not economically feasible. Therefore, it is crucial to investigate ways to effectively treat liquid radioactive waste to comply with environmental regulations. Membrane technology is a cost-effective and energy-efficient method for treating radioactive waste. This review focuses on the utilization of membrane technology for the treatment of radioactive waste, discussing various collective membrane techniques, including nanofiltration, microfiltration, ultrafiltration, membrane distillation, and reverse osmosis. The review also evaluates selective membrane separation techniques such as ion-exchange membranes, supported liquid membranes, and polymer inclusion membranes. Previous studies' findings are summarized, and potential areas for future development are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw data that support the finding of this paper are available from the corresponding author upon request.

References

  1. Shirazi MJA, Bazgir S, Shirazi MMA, Ramakrishna S (2013) Coalescing filtration of oily wastewaters: characterization and application of thermal treated, electrospun polystyrene filters. New Pub Balaban 51:5974–5986. https://doi.org/10.1080/19443994.2013.765364

    Article  CAS  Google Scholar 

  2. Kotsanopoulos KV, Arvanitoyannis IS (2015) Membrane processing technology in the food industry: food processing wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods. Crtic Rev Food Sci Nutr 55:1147–1175. https://doi.org/10.1080/10408398.2012.685992

    Article  CAS  Google Scholar 

  3. Zakrzewska-Trznadel G, (2600) Membrane processes for environmental protection: applications in nuclear technology, In: Proc. 2nd Polish-Japanese Work. Mater. Sci. “Materials Sustain. Dev. 21st Century” 2005, Warsaw-Pland, pp. 101–111.

  4. Wattal PK (2013) Indian programme on radioactive waste management. Sadhana Acad Proc Eng Sci 38:849–857. https://doi.org/10.1007/s12046-013-0170-0

    Article  Google Scholar 

  5. Nagasaki S, Nakayama S (2015) Radioactive waste engineering and management. Springer, Tokyo

    Book  Google Scholar 

  6. Wang P, Wang M, Liu F, Ding S, Wang X, Du G, Liu J, Apel P, Kluth P, Trautmann C, Wang Y (2018) Ultrafast ion sieving using nanoporous polymeric membranes. Nat Commun 9:1–9. https://doi.org/10.1038/s41467-018-02941-6

    Article  CAS  Google Scholar 

  7. González D, Amigo J, Suárez F (2017) Membrane distillation: perspectives for sustainable and improved desalination. Renew Sustain Energy Rev 80:238–259. https://doi.org/10.1016/j.rser.2017.05.078

    Article  Google Scholar 

  8. WENRA (WENRA), (2016) Report radioactive waste treatment and conditioning safety reference levels

  9. Zdorovets MV, Yeszhanov AB, Korolkov IV, Güven O, Dosmagambetova SS, Shlimas DI, Zhatkanbayeva ZK, Zhidkov IS, Kharkin PV, Gluchshenko VN, Zheltov DA, Khlebnikov N, Kuklin IE (2020) Liquid low-level radioactive wastes treatment by using hydrophobized track-etched membranes. Prog Nucl Energy 118:103128. https://doi.org/10.1016/j.pnucene.2019.103128

    Article  CAS  Google Scholar 

  10. Ipek U, Öbek E, Akca L, Arslan EI, Hasar H, Doǧru M, Baykara O (2002) Determination of degradation of radioactivity and its kinetics in aerobic composting. Bioresour Technol 84:283–286. https://doi.org/10.1016/S0960-8524(02)00024-X

    Article  CAS  PubMed  Google Scholar 

  11. Ihsan UR, Khurshid A, Muhammad H, Ullah M, Sohail M, Siddique MF, (2020) Fabrication and Characterization of porous alumina and fly ash based filtering membrane through appending pore forming agent technique, In: 5th Online Int. Conf. Sustain. Process Ind., Peshawar

  12. Thomas S, Balakrishnan P, Sreekala MS (2018) Fundamental biomaterials: ceramics. Fundam Biomater Ceram. https://doi.org/10.1016/C2016-0-03513-1

    Article  Google Scholar 

  13. Mondal S, Wickramasinghe SR (2008) Produced water treatment by nanofiltration and reverse osmosis membranes. J Memb Sci 322:162–170. https://doi.org/10.1016/j.memsci.2008.05.039

    Article  CAS  Google Scholar 

  14. Senthilraja S, Karthikeyan M (2015) Nanofluid applications in future automobiles: comprehensive review of existing data. Nano Micro Lett 2:306–310. https://doi.org/10.3786/nml.v2i4.p306-310

    Article  Google Scholar 

  15. Oji LN, Martin KB, Hobbs DT (2009) Development of prototype titanate ion-exchange loaded-membranes for strontium, cesium and actinide decontamination from aqueous media. J Radioanal Nucl Chem 279:847–854. https://doi.org/10.1007/s10967-008-7365-6

    Article  CAS  Google Scholar 

  16. Eljaddi T, Lebrun L, Hlaibi M (2017) Review on mechanism of facilitated transport on liquid membranes. J Membr Sci Res 3:199–208

    Google Scholar 

  17. Leiknes TO (2009) The effect of coupling coagulation and flocculation with membrane filtration in water treatment: a review. J Environ Sci 21:8–12. https://doi.org/10.1016/S1001-0742(09)60003-6

    Article  CAS  Google Scholar 

  18. Ambashta RD, Sillanpää MET (2012) Membrane purification in radioactive waste management: a short review. J Environ Radioact 105:76–84. https://doi.org/10.1016/j.jenvrad.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  19. IAEA (1994) Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes, Vienna

  20. Arnal JM, Sancho M, Verdú G, Campayo JM, Gozálvez JM (2003) Treatment of 137Cs liquid wastes by reverse osmosis part II. Real application. Desalination 154:35–42. https://doi.org/10.1016/S0011-9164(03)00206-6

    Article  CAS  Google Scholar 

  21. Freeman J (2001) Wolf Creek’s liquid waste processing system improvements”, In: Proc. EPRI Int. Low-Level Waste Conf. 2000, Electr. Power Res. Inst., Palo Alto, CA

  22. Wilson JH, et al. (201) Effective liquid waste processing utilizing membrane tech- nologies, In: Proc. EPRI Int. Low Lev. Waste Conf., 2000, Rep. 100671, Electr. Power Res. Institute, Palo Alto, CA, San Antonio, TX

  23. Liu H, Wang J (2013) Treatment of radioactive wastewater using direct contact membrane distillation. J Hazard Mater 261:307–315. https://doi.org/10.1016/j.jhazmat.2013.07.045

    Article  CAS  PubMed  Google Scholar 

  24. Bamasag A, Almatrafi E, Alqahtani T, Phelan P, Ullah M, Mustakeem M, Obaid M, Ghaffour N (2023) Recent advances and future prospects in direct solar desalination systems using membrane distillation technology. J Clean Prod 385:135737. https://doi.org/10.1016/j.jclepro.2022.135737

    Article  CAS  Google Scholar 

  25. Bamasag A, Alqahtani T, Sinha S, Ghaffour N, Phelan P (2020) Experimental investigation of a solar-heated direct contact membrane distillation system using evacuated tube collectors. Desalination. https://doi.org/10.1016/j.desal.2020.114497

    Article  Google Scholar 

  26. Khayet M, Godino MP, Mengual JI (2003) Possibility of nuclear desalination through various membrane distillation configurations: a comparative study. Int J Nucl Desalin 1:30–46. https://doi.org/10.1504/IJND.2003.003441

    Article  CAS  Google Scholar 

  27. Khayet M, Mengual JI, Zakrzewska-Trznadel G (2006) Direct contact membrane distillation for nuclear desalination, part II: experiments with radioactive solutions. Int J Nucl Desalin 2:56–73. https://doi.org/10.1504/IJND.2006.009505

    Article  CAS  Google Scholar 

  28. Qtaishat M, Rana D, Khayet M, Matsuura T (2009) Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation. J Memb Sci 327:264–273. https://doi.org/10.1016/J.MEMSCI.2008.11.040

    Article  CAS  Google Scholar 

  29. Shirazi MMA, Kargari A (2015) A review on applications of membrane distillation (MD) process for wastewater treatment. J Membr Sci Res 1:101–112

    Google Scholar 

  30. Tijing LD, Woo YC, Choi JS, Lee S, Kim SH, Shon HK (2015) Fouling and its control in membrane distillation-a review. J Memb Sci 475:215–244. https://doi.org/10.1016/j.memsci.2014.09.042

    Article  CAS  Google Scholar 

  31. Asif MB, Hai FI, Kang J, van de Merwe JP, Leusch FDL, Price WE, Nghiem LD (2018) Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor. Bioresour Technol 247:528–536. https://doi.org/10.1016/j.biortech.2017.09.129

    Article  CAS  PubMed  Google Scholar 

  32. Sridhar SSM (2019) Membrane processes, pervaporation, vapor permeation and membrane distillation for industrial scale separations, martin scrivener and Philip Carmical, Hoboken, NJ 07030, USA

  33. Korolkov IV, Gorin YG, Yeszhanov AB, Kozlovskiy AL, Zdorovets MV (2018) Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater Chem Phys 205:55–63. https://doi.org/10.1016/j.matchemphys.2017.11.006

    Article  CAS  Google Scholar 

  34. Curcio E, Drioli E (2007) Membrane distillation and related operations—a review. Separ Purif Rev 34:35–86. https://doi.org/10.1081/SPM-200054951

    Article  CAS  Google Scholar 

  35. Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130. https://doi.org/10.1016/j.desal.2013.02.022

    Article  CAS  Google Scholar 

  36. Khedr MG (2013) Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination 321:47–54

    Article  Google Scholar 

  37. Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456. https://doi.org/10.1016/J.POLYMER.2016.07.085

    Article  CAS  Google Scholar 

  38. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084

    Article  CAS  Google Scholar 

  39. Dach H (2009) Comparison of nanofiltration and reverse osmosis processes for a selective desalination of brackish water feeds To cite this version : HAL Id : tel-00433513 ET D ’ OSMOSE INVERSE POUR LE DESSALEMENT

  40. Sancho M, Arnal JM (2013) Treatment of hospital radioactive liquid wastes from RIA (radioimmunoassay) by membrane technology. DES 321:110–118. https://doi.org/10.1016/j.desal.2013.03.032

    Article  CAS  Google Scholar 

  41. Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56. https://doi.org/10.1002/ep.670220116

    Article  Google Scholar 

  42. Rahman ROA, Ibrahium HA, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565. https://doi.org/10.3390/w3020551

    Article  Google Scholar 

  43. Gao Y, Zhao J, Zhang G, Zhang D, Cheng W, Yuan G, Liu X, Ma B, Zeng J, Gu P (2004) Treatment of the wastewater containing low-level241 Am using flocculation-microfiltration process. Sep Purif Technol 40:183–189. https://doi.org/10.1016/j.seppur.2004.02.009

    Article  CAS  Google Scholar 

  44. Zakrzewska-trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste nuclear activities decommissioning of nuclear. Desalination 321:119–130. https://doi.org/10.1016/j.desal.2013.02.022

    Article  CAS  Google Scholar 

  45. Salinas-Rodriguez SG, Amy GL, Schippers JC, Kennedy MD (2015) The Modified fouling index ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems. Desalination 365:79–91. https://doi.org/10.1016/J.DESAL.2015.02.018

    Article  CAS  Google Scholar 

  46. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Kornilovich BY (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236. https://doi.org/10.1016/S0011-9164(04)00046-3

    Article  CAS  Google Scholar 

  47. Bisset W, Jacobs H, Koshti N, Stark P, Gopalan A (2003) Synthesis and metal ion complexation properties of a novel polyethyleneimine N-methylhydroxamic acid water soluble polymer. React Funct Polym 55:109–119. https://doi.org/10.1016/S1381-5148(02)00199-2

    Article  CAS  Google Scholar 

  48. Smith BM, Todd PB, Christopher N (2007) Hyperbranched chelating polymers for the polymer-assisted ultrafiltration of boric acid. Sepr Sci Technol 34:1925–1945. https://doi.org/10.1081/SS-100100747

    Article  Google Scholar 

  49. Gupta DK, Voronina A (2019) Remediation contaminated radioactively measures for areas. Springer, Cham

    Book  Google Scholar 

  50. Khedr MG (2000) Membrane fouling problems in reverse-osmosis desalination applications. Int Desalin Water Reuse Q 10:8–17

    CAS  Google Scholar 

  51. Rana D, Matsuura T, Kassim MA, Ismail AF (2013) Radioactive decontamination of water by membrane processes—a review. Desalination 321:77–92. https://doi.org/10.1016/j.desal.2012.11.007

    Article  CAS  Google Scholar 

  52. Alkhudhiri A, Hilal N (2018) Membrane distillation-Principles, applications, configurations, design, and implementation. Elsevier

    Book  Google Scholar 

  53. Szöke S, Pátzay G, Weiser L (2005) Cobalt(III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration. Desalination 175:179–185. https://doi.org/10.1016/j.desal.2004.09.027

    Article  CAS  Google Scholar 

  54. White N, Misovich M, Yaroshchuk A, Bruening ML (2015) Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl Mater Interfaces 7:6620–6628. https://doi.org/10.1021/AM508945P/SUPPL_FILE/AM508945P_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  55. Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A (2020) Selectivity of transport processes in ion-exchange membranes: relationship with the structure and methods for its improvement. Int J Mol Sci 2020:5517. https://doi.org/10.3390/IJMS21155517

    Article  Google Scholar 

  56. Roghmans F, Evdochenko E, Martí-Calatayud MC, Garthe M, Tiwari R, Walther A, Wessling M (2020) On the permselectivity of cation-exchange membranes bearing an ion selective coating. J Memb Sci 600:117854. https://doi.org/10.1016/J.MEMSCI.2020.117854

    Article  CAS  Google Scholar 

  57. Zhang W, Miao M, Pan J, Sotto A, Shen J, Gao C, Van der Bruggen B (2017) Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes. Desalination 411:28–37. https://doi.org/10.1016/J.DESAL.2017.02.008

    Article  CAS  Google Scholar 

  58. Golubenko DV, Van Der Bruggen B, Yaroslavtsev AB (2021) Ion exchange membranes based on radiation-induced grafted functionalized polystyrene for high-performance reverse electrodialysis. J Power Sour 511:230460

    Article  CAS  Google Scholar 

  59. Akberova EM, Vasileva VI (2020) Effect of the resin content in cation-exchange membranes on development of electroconvection. Electrochem Commun 111:106659. https://doi.org/10.1016/J.ELECOM.2020.106659

    Article  CAS  Google Scholar 

  60. Pismenskaya ND, Pokhidnia EV, Pourcelly G, Nikonenko VV (2018) Can the electrochemical performance of heterogeneous ion-exchange membranes be better than that of homogeneous membranes? J Memb Sci 566:54–68. https://doi.org/10.1016/J.MEMSCI.2018.08.055

    Article  CAS  Google Scholar 

  61. Tripathi N (2021) The disadvantages of ion exchange

  62. Inoue H, Kagoshima M (2005) Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane. Recent Adv Multidiscip Appl Phys. https://doi.org/10.1016/B978-008044648-6.50121-X

    Article  Google Scholar 

  63. Mondal DN, Sarangi K, Pettersson F, Sen PK, Saxén H, Chakraborti N (2011) Cu-Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms. Hydrometallurgy 107:112–123. https://doi.org/10.1016/J.HYDROMET.2011.02.008

    Article  CAS  Google Scholar 

  64. Ochromowicz K, Apostoluk W (2010) Modelling of carrier mediated transport of chromium(III) in the supported liquid membrane system with D2EHPA. Sep Purif Technol 72:112–117. https://doi.org/10.1016/J.SEPPUR.2010.01.013

    Article  CAS  Google Scholar 

  65. Parhi PK (2013) Supported liquid membrane principle and its practices: a short review. J Chem. https://doi.org/10.1155/2013/618236

    Article  Google Scholar 

  66. Bazhenov SD, Bildyukevich AV, Volkov AV (2018) Gas-liquid hollow fiber membrane contactors for different applications. Fibers. https://doi.org/10.3390/fib6040076

    Article  Google Scholar 

  67. Fritz JS (2005) Ion exchange and solvent extraction, In: SenGupta AK, Marcus Y, The Hebrew University of Jerusalem. Marcel Dekker, Inc. New York, Basel. https://doi.org/10.1021/ja041021m

  68. Yang XJ, Fane AG, Soldenhoff K (2003) Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Ind Eng Chem Res 42:392–403. https://doi.org/10.1021/ie011044z

    Article  CAS  Google Scholar 

  69. Prakorn R, Eakkapit S, Weerawat P, Milan H, Ura P (2006) Permeation study on the hollow-fiber supported liquid membrane for the extraction of Cobalt(II). Korean J Chem Eng. https://doi.org/10.1007/BF02705702

    Article  Google Scholar 

  70. Kandwal P, Dixit S, Mukhopadhyay S, Mohapatra PK (2011) Mass transport modeling of Cs(I) through hollow fiber supported liquid membrane containing calix-[4]-bis(2,3-naptho)-crown-6 as the mobile carrier. Chem Eng J 174:110–116. https://doi.org/10.1016/J.CEJ.2011.08.057

    Article  CAS  Google Scholar 

  71. Ansari SA, Mohapatra PK, Kandwal P, Verboom W (2016) Diglycolamide-functionalized calix[4]arene for am(III) recovery from radioactive wastes: liquid membrane studies using a hollow fiber contactor. Ind Eng Chem Res 55:1740–1747. https://doi.org/10.1021/acs.iecr.5b04148

    Article  CAS  Google Scholar 

  72. Dworzak WR, Naser AJ (2012) Pilot-scale evaluation of supported liquid membrane extraction. Sepr Sci Technol 22(677):689. https://doi.org/10.1080/01496398708068974

    Article  Google Scholar 

  73. Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J Memb Sci 281:7–41. https://doi.org/10.1016/j.memsci.2006.03.035

    Article  CAS  Google Scholar 

  74. Mohapatra PK, Lakshmi DS, Bhattacharyya A, Manchanda VK (2009) Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution. J Hazard Mater 169:472–479. https://doi.org/10.1016/j.jhazmat.2009.03.124

    Article  CAS  PubMed  Google Scholar 

  75. John AMS, Cattrall RW, Kolev SD (2010) Extraction of uranium(VI) from sulfate solutions using a polymer inclusion membrane containing di-(2-ethylhexyl) phosphoric acid. J Memb Sci 364:354–361. https://doi.org/10.1016/J.MEMSCI.2010.08.039

    Article  Google Scholar 

  76. Bayou N, Arous O, Amara M, Kerdjoudj H (2010) Elaboration and characterisation of a plasticized cellulose triacetate membrane containing trioctylphosphine oxyde (TOPO): application to the transport of uranium and molybdenum ions. Comptes Rendus Chim 13:1370–1376. https://doi.org/10.1016/J.CRCI.2010.04.015

    Article  CAS  Google Scholar 

  77. Bhattacharyya A, Mohapatra PK, Hassan PA, Manchanda VK (2011) Studies on the selective Am 3+ transport, irradiation stability and surface morphology of polymer inclusion membranes containing Cyanex-301 as carrier extractant. J Hazard Mater 192:116–123. https://doi.org/10.1016/J.JHAZMAT.2011.04.105

    Article  CAS  PubMed  Google Scholar 

  78. Sodaye S, Scindia YM, Pandey AK, Reddy AVR (2007) Studies on the optimisation of optical response of scintillating optodes. Sens Act B Chem 123:50–58. https://doi.org/10.1016/J.SNB.2006.07.020

    Article  CAS  Google Scholar 

  79. Chaudhury S, Bhattacharyya A, Goswami A (2014) Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution. Environ Sci Technol 48:12994–13000. https://doi.org/10.1021/es503667j

    Article  CAS  PubMed  Google Scholar 

  80. Gherasim CV, Bourceanu G, Olariu RI, Arsene C (2011) A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. J Hazard Mater 197:244–253. https://doi.org/10.1016/j.jhazmat.2011.09.082

    Article  CAS  PubMed  Google Scholar 

  81. Kozlowski CA, Walkowiak W (2004) Transport of Cr(VI), Zn(II), and Cd(II) ions across polymer inclusion membranes with tridecyl(pyridine) oxide and tri-n-octylamine. Sep Sci Technol 39:3127–3141. https://doi.org/10.1081/SS-200038322

    Article  CAS  Google Scholar 

  82. Bloch R, Finkelstein A, Kedem O, Vofsi D (2002) Metal-ion seperations by dialysis through solvent membranes. Ind Eng Chem Process Des Dev 6:231–237. https://doi.org/10.1021/I260022A014

    Article  Google Scholar 

  83. Kim JS, Kim SK, Ko JW, Kim ET, Yu SH, Cho MH, Kwon SG, Lee EH (2000) Selective transport of cesium ion in polymeric CTA membrane containing calixcrown ethers. Talanta 52:1143–1148. https://doi.org/10.1016/S0039-9140(00)00489-6

    Article  CAS  PubMed  Google Scholar 

  84. Tayeb R, Fontas C, Dhahbi M, Tingry S, Seta P (2005) Cd(II) transport across supported liquid membranes (SLM) and polymeric plasticized membranes (PPM) mediated by Lasalocid A. Sep Purif Technol 42:189–193. https://doi.org/10.1016/J.SEPPUR.2004.07.006

    Article  CAS  Google Scholar 

  85. Peterson DS (2014) Ion exchange membranes. Encycl Microfluid Nanofluid. https://doi.org/10.1007/978-3-642-27758-0_739-2

    Article  Google Scholar 

  86. Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Memb Sci 522:267–291. https://doi.org/10.1016/j.memsci.2016.09.033

    Article  CAS  Google Scholar 

  87. Kislik VS (2014) Supported liquid membrane. Encycl Membr. https://doi.org/10.1007/978-3-642-40872-4_566-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Scientific Research Deanship, King Khalid University (KKU), Abha, Asir, Kingdom of Saudi Arabia for funding this research work under the grant number RGP.2/79/44

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Ur Rahman.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, I.U., Mohammed, H.J., Siddique, M.F. et al. Application of membrane technology in the treatment of waste liquid containing radioactive materials. J Radioanal Nucl Chem 332, 4363–4376 (2023). https://doi.org/10.1007/s10967-023-09169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09169-9

Keywords

Navigation