Skip to main content
Log in

Radon (Rn-222) concentration in ground waters of Bokaro District, Jharkhand, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The main aim of the study is to present an assessment report of radon concentration in the underground water of Bokaro district, Jharkhand, India. Water samples were collected from tube-wells at 100 different locations scattered throughout the district. The radon (222Rn) concentration level varies widely between 3.5 and 598.9 Bq/l with an average value of 145.8 Bq/l. In this paper, total annual effective dose of the samples and associated excess lifetime cancer risk (ELCR) were estimated also to assess the health risk due to the consumption of the radon rich water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Directorate of Geology, Department of Mines & Geology, GoJ)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Stirling CH, Andersen MB, Potter EK, Halliday AN (2007) Low-temperature isotopic fractionation of uranium. Earth Planet Sci Lett 264(1–2):208–225. https://doi.org/10.1016/j.epsl.2007.09.019

    Article  CAS  Google Scholar 

  2. Moreno V, Bach J, Baixeras C, Font L (2013) Radon levels in groundwaters and natural radioactivity in soils of the volcanic region of La Garrotxa. Spain J Environ Radioact 128C:1–8. https://doi.org/10.1016/j.jenvrad.2013.10.021

    Article  CAS  Google Scholar 

  3. Fonollosa E, Penalver A, Borull F, Aguilar C (2016) Radon in spring waters in the south ofCatalonia. J Environ Radioact 151:275–281. https://doi.org/10.1016/j.jenvrad.2015.10.019

    Article  CAS  PubMed  Google Scholar 

  4. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 1988. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly on the Effects of Atomic Radiation. United Nations, New York.

  5. Lorenzo-González M, Torres-Durán M, Barbosa-Lorenzo R, Provencio-Pulla M, Barros-Dios JM, Ruano-Ravina A (2019) Radon exposure: a major cause of lung cancer. Respir Med 13(9):839–850. https://doi.org/10.1080/17476348.2019.1645599

    Article  CAS  Google Scholar 

  6. Grzywa-Celińska A, Krusiński A, Kozak K (2020) Radon-the element of risk. The impact of radon exposure on human health. Toxics 8(4):120. https://doi.org/10.3390/toxics8040120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lerman A (1979) Geochemical processes. Water and sediment environments. John Wiley and Sons, Inc, New York, USA

  8. Martins LM, Pereira AJ, Oliveira AS, Fernandes LS, Pacheco FA (2020) A new radon prediction approach for an assessment of radiological potential in drinking water. Sci Total Environ 712:136427. https://doi.org/10.1016/j.scitotenv.2019.136427

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Han Z, Zhong S, Gao P, Wei C (2021) Pore size distribution and pore functional characteristics of soils as affected by rock fragments in the hilly regions of the Sichuan Basin, China <0.5 μm followed by transmission pores with sizes of >30 μm and finally by storage pores with sizes of 0.5–30 μm Can. J Soil Sci 101:74–83

    CAS  Google Scholar 

  10. Nazaroff WW, Moed BA, Sextro RG (1988) Soil as a Source of Indoor Radon: Generation Migration and Entry. In: WW Nazaroff AV Nero (eds.) Radon and Its Decay Products in Indoor Air. J Wiley and Sons. New York.121: 57–112

  11. Rogers VC, Nielson KK (1991) Multiphase radon generation and transport in porous materials. Health Phys 60(6):807–815. https://doi.org/10.1097/00004032-199106000-00006

    Article  CAS  PubMed  Google Scholar 

  12. Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30(2):137–160. https://doi.org/10.1029/92RG00055

    Article  Google Scholar 

  13. Vital M, Grondona S, Dimova N, Martinez DE (2022) Factors affecting the radon (222Rn) emanation from aquifer rock materials: implications for radiological and groundwater tracer studies. Appl Radiat Isot 189:110433. https://doi.org/10.1016/j.apradiso.2022.110433

    Article  CAS  PubMed  Google Scholar 

  14. Ma’arfi F, Khan MY, Husain A, Khanam A, Hasan Z (2021) Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1. In Contamination of Water 123–141. Academic Press https://doi.org/10.1016/B978-0-12-824058-8.00012-8

  15. Ground water information booklet of Bokaro district, Jharkhand (September 2013). Central Ground water BoardMinistry of Water Resources(Govt. of India)State Unit Office, Ranchi. http://cgwb.gov.in/District_Profile/Jharkhand/bokaro.pdf

  16. Mukherjee D, Ghose NC (1998) Conglomerate at the base of Bihar Mica Belt meta sediments Koderma district Bihar and its stratigraphic significance National Seminar on Advancement of Geological Sciences in Bihar Geological Survey of India. Patna, 15–16.

  17. https://geology.jharkhand.gov.in/dist_geological_map.html

  18. https://www.laurussystems.com/wp-content/uploads/LS-AquaKIT-Radon-Monitor-In-Water.pdf

  19. AquaKIT User Manual. https://drive.google.com/file/d/1Y_lucRKyEBUjeTXSbdcv7XKAUN9-vbHt/view

  20. Naskar AK, Gazi M, Mondal M, Deb A (2022) Water radon risk in Susunia hill area: an assessment in terms of radiation dose. Environ Sci Pollut Res 29(8):11160–11171. https://doi.org/10.1007/s11356-021-16362-4

    Article  CAS  Google Scholar 

  21. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000) Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources. United Nations

  22. United Nations Scientific Committee on the Effects of Atomic Radiation. (2008) Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2006 Report, Volume I: Report to the General Assembly, Scientific Annexes A and B. United Nations

  23. EPA 2003. Assessment of Risk from Radon in Homes (Washington, DC: Environmental Protection Agency) EPA 402-R03–003, USA

  24. Abdullah EA, Khaled FAS, Qusai BY, Ayah A (2019) Assessment of radon concentrations and exposure doses in dwellings surrounding a high capacity gas turbine power station using passive measurements and dispersion modelling. J Environ Radioact 196:9–14. https://doi.org/10.1016/j.jenvrad.2018.10.001

    Article  CAS  Google Scholar 

  25. https://pib.gov.in/PressReleseDetail.aspx?PRID=1606209

  26. ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1–3), ICRP.

  27. The 2007 Recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP 2007; 37: 143–194.

  28. WHO Library Cataloguing-in-Publication Data Guidelines for drinking-water quality: fourth edition incorporating the first addendum 90(24 April 2017)

  29. Duggal V, Sharma S, Mehra R (2020) Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan India. Chemosphere 239:124782. https://doi.org/10.1016/j.chemosphere.2019.124782

    Article  CAS  PubMed  Google Scholar 

  30. Mitra S, Chowdhury S, Mukherjee J, Sutradhar S, Mondal S, Barman C, Deb A (2021) Assessment of radon (222 Rn) activity in groundwater and soil-gas in Purulia district, West Bengal, India. J Radioanal Nucl Chem 330:1331–1338. https://doi.org/10.1007/s10967-021-07989-1

    Article  CAS  Google Scholar 

  31. Nandakumaran P, Vinayachandran N (2020) A preliminary appraisal of radon concentration in groundwater from the high background radiation area (HBRA) of Coastal Kerala. J Geol Soc India 95:491–496. https://doi.org/10.1007/s12594-020-1466-4

    Article  CAS  Google Scholar 

  32. Rani S, Kansal S, Singla AK, Nazir S, Mehra R (2023) Estimation of annual effective dose due to radon concentration in water samples of Moga District of Northern Punjab India. Indian J Pure Appl Phys 61:423–428. https://doi.org/10.56042/ijpap.v61i6.2412

    Article  Google Scholar 

  33. Nazir S, Simnani S, Sahoo BK, Rashid I, Masood S (2021) Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environ Geochem Health 43:837–854. https://doi.org/10.1007/s10653-020-00576-5

    Article  CAS  PubMed  Google Scholar 

  34. Deeba F, Rahman SH, Kabir MZ (2022) Assessment of annual effective dose due to inhalation and ingestion of radon from groundwater at the southeast coastal area Bangladesh. Radiat Prot Dosim 194(2–3):169–177. https://doi.org/10.1093/rpd/ncab096

    Article  CAS  Google Scholar 

  35. Branco R, Cruz JV, Silva C, Coutinho R, Andrade C, Zanon V (2021) Radon (222 Rn) occurrence in groundwater bodies on São Miguel Island (Azores archipelago, Portugal). Environ Earth Sci 80:1–4. https://doi.org/10.1007/s12665-021-09906-x

    Article  CAS  Google Scholar 

  36. Rahimi M, Abadi AA, Koopaei LJ (2022) Radon concentration in groundwater, its relation with geological structure and some physicochemical parameters of Zarand in Iran. Appl Radiat Isot 185:110223. https://doi.org/10.1016/j.apradiso.2022.110223

    Article  CAS  PubMed  Google Scholar 

  37. Yamada R, Hosoda M, Tabe T, Tamakuma Y, Suzuki T, Kelleher K, Tsujiguchi T, Tateyama Y, Nugraha ED, Okano A, Narumi Y (2022) 222Rn and 226Ra concentrations in spring water and their dose assessment due to ingestion intake. Int J Environ Res Pub Health 19(3):1758. https://doi.org/10.3390/ijerph19031758

    Article  CAS  Google Scholar 

  38. Lima-Flores A, Castaño VM, Golzarri JI, Chavarría-Sánchez AC, Espinosa G (2021) Radon in drinking water in Mexico City. J Radioanal Nucl Chem 329(2):527–536. https://doi.org/10.1007/s10967-021-07849-y

    Article  CAS  Google Scholar 

  39. Przylibski TA, Staśko S, Domin E (2022) Radon groundwater in a radon-prone area: possible uses and problems: an example from SW part of Kłodzko Valley, Sudetes SW Poland. Environ Geochem Health 44:4539–4555. https://doi.org/10.1007/s10653-022-01212-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adagunodo TA, Aremu AA, Bayowa OG, Ojoawo AI, Adewoye AO, Olonade TE (2023) Assessment and health effects of radon and its relation with some parameters in groundwater sources from shallow aquifers in granitic terrains, southeastern axis of Ibadan Nigeria. Groundw Sustain Dev 25:100930. https://doi.org/10.1016/j.gsd.2023.100930

    Article  Google Scholar 

  41. Nugraha ED, Hosoda M, Mellawati J, Untara U, Rosianna I, Tamakuma Y, Modibo OB, Kranrod C, Kusdiana K, Tokonami S (2021) Radon activity concentrations in natural hot spring water: dose assessment and health perspective. Int J Environ Res Pub Health 18:920. https://doi.org/10.3390/ijerph18030920

    Article  CAS  Google Scholar 

  42. Novikov DA, Dultsev FF, Sukhorukova AF, Maksimova AA, Chernykh AV, Derkachyov AS (2020) Monitoring of radionuclides in the natural waters of Novosibirsk Russia. Groundw Sustain Dev 15:100674. https://doi.org/10.1016/j.gsd.2021.100674

    Article  Google Scholar 

  43. Kelly JL, Dulai H, Glenn CR, Lucey PG (2019) Integration of aerial infrared thermography and in situ radon-222 to investigate submarine groundwater discharge to Pearl Harbor, Hawaii, USA. Limnol Oceanogr 64(1):238–257

    Article  Google Scholar 

  44. Ademola JA, Oyeleke OA (2017) Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan Nigeria. J Radiol Prot 37(1):189. https://doi.org/10.1088/1361-6498/37/1/189

    Article  CAS  PubMed  Google Scholar 

  45. Mukherjee J, Mitra S, Sutradhar S, Chowdhury S, Mondal S, Deb A, Barman C (2023) Analysis of radon concentration in ground water and estimation of associated health risks in Purulia Municipality, West Bengal. India Arab J Geosci 16(2):125. https://doi.org/10.1007/s12517-023-11202-w

    Article  CAS  Google Scholar 

  46. Khandaker MU, Baballe A, Tata S, Adamu MA (2021) Determination of radon concentration in groundwater of Gadau, Bauchi State, Nigeria and estimation of effective dose. Radiat Phys Chem 178:108934. https://doi.org/10.1016/j.radphyschem.2020.108934

    Article  CAS  Google Scholar 

  47. Adinehvand K, Azadbakht B, Yekta MF (2019) Dose assessment and measurement of radon concentration in water supplies of Borujerd County in Iran. Int J Radiat Res 17(3):507–511. https://doi.org/10.18869/acadpub.ijrr.17.3.507

    Article  Google Scholar 

  48. Potter K, Hagen H, Kerren A, Dannenmann, P (2006) Methods for presenting statistical information: The box plot. In VLUDS 97–106

  49. Ramasamy V, Sundarrajan M, Paramasivam K, Meenakshisundaram V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala India. Appl Radiat Iso 73:21–31

    Article  CAS  Google Scholar 

  50. Gazi M, Naskar AK, Mondal M, Deb A (2022) Radiological safety assessment of drinking water in Darjeeling hill and foothill areas: an experimental finding. Water Supply 22(8):6504–6515. https://doi.org/10.2166/ws.2022.259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Sidho-Kanho-Birsha University for providing the essential infrastructural facility and the local people of the area under study for their cooperation. Authors acknowledge the assistance of Suman Paul, Professor and Suman Mukherjee, Research Scholar of the Department of Geography, Sidho-Kanho-Birsha University, India in preparing the figures using ArcGIS. CB acknowledges the financial assistance from Department of Science & Technology-Fund for Improvement of Science &Technology Infrastructure (SR/FST/PS-1/2020/159) New Delhi, India and RUSA grant of SKBU, University Grant Commissions-Faculty Research Promotion Scheme Start-up-Grant [(No.F.30-557/2021(BSR) Dated: 21 Jan, 2022)], seed grant of faculty research, SKBU (R/847/SKBU/2022 dated 20th July, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Barman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could have influenced this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, S., Mukherjee, J., Mitra, S. et al. Radon (Rn-222) concentration in ground waters of Bokaro District, Jharkhand, India. J Radioanal Nucl Chem 333, 1547–1558 (2024). https://doi.org/10.1007/s10967-023-09143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09143-5

Keywords

Navigation