Skip to main content
Log in

Estimation of radiation dose due to ingestion of radon in water samples of Garhwal Himalaya, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The measurements of radon concentrations in drinking water sources in and around the Main Central Thrust (MCT) region in Garhwal Himalaya, India, were carried out using the scintillation detector-based SMART RnDuo technique for radiation protection purposes. Radon values in the analyzed samples were observed between 1.1 and 183.9 Bq L−1 (AM = 19.7 Bq L−1). Radon values in 94% of the samples were found well below the World Health Organization (WHO) reference limit. The estimated radiation doses for different age groups were found higher than the WHO safe limit of 100 µSv y−1 (from all sources including radon) except for the age groups of 0–12 months infants and 1–3 years children. The results of this study may be useful for future studies on epidemiology, examining hidden faults, uranium exploration etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO (2004) Guidelines for drinking-water quality, volume 1: World Health Organization, 3rd edn. WHO Library Cataloguing, Geneva

    Google Scholar 

  2. Risk assessment (1999) Risk Assessment of Radon in drinking Water. National Academies Press, Washington, DC

    Google Scholar 

  3. Yu KN, Guan ZJ, Stokes MJ, Young ECM (1994) A Preliminary Study on the Radon Concentrations in Water in Hong Kong and the Associated Health Effects

  4. World Health Organization (2017) WHO guidelines for the drinking water. World health Statistics 1–116

  5. Tanner AB (1980) Radon migration in the ground: a supplementary review. Nat Radiation Environ III 5–56

  6. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans., International Agency for Research on Cancer, National Cancer Institute (U.S.) (1988) Man-made mineral fibres and radon. World Health Organization, International Agency for Research on Cancer

  7. Prasad G, Prasad Y, Gusain GS, Ramola RC (2008) Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. Radiat Meas. https://doi.org/10.1016/j.radmeas.2008.04.050

    Article  Google Scholar 

  8. Ishimori Y, Lange K, Martin P et al (2013) Measurement and calculation of Radon releases from NORM residues. International Atomic Energy Agency Vienna International Centre, Austria, pp 1–103

    Google Scholar 

  9. Feng S, Li C, Cui Y et al (2021) Novel method for measuring temperature-dependent diffusion coefficient of radon in porous media. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2020.109506

    Article  PubMed  Google Scholar 

  10. UNSCEAR SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation 1988 Report to the General Assembly, with annexes UNITED NATIONS. New York

  11. Sethy NK, Jha V, Tripathi RM (2015) Causes of emissions from agricultural residue burning in north-west India: evaluation of a technology policy response. Ann Geophys Atmos Hydros Space Sci 109:367–379. https://doi.org/10.18520/v109/i10/1855-1859

    Article  Google Scholar 

  12. Srilatha MC, Sannappa J, Rangaswami DR (2014) Studies on concentration of Radon and Physicochemical parameters in ground water around Ramanagara and Tumkur districts, Karnataka, India. Int J Adv Sci Tech Res 2:641–660

    Google Scholar 

  13. Yadav M, Jindal MK, Ramola RC (2023) Study of Radionuclides in Rocks samples from Ukhimath Area and its correlation with soil and Water Data. Chemistry Africa. https://doi.org/10.1007/s42250-023-00635-1

  14. Gusain GS, Badoni M, Prasad G et al (2009) Studies of natural radionuclides and dose estimation from soil samples of Kumaun Himalaya, India. Indian J Phys 83:1215–1220. https://doi.org/10.1007/s12648-009-0104-1

    Article  CAS  Google Scholar 

  15. Gusain GS, Rautela BS, Sahoo SK et al (2012) Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India. Radiat Prot Dosimetry 152:42–45. https://doi.org/10.1093/rpd/ncs148

    Article  CAS  PubMed  Google Scholar 

  16. Ramola RC, Prasad M, Rawat M et al (2015) Comparative study of various techniques for environmental radon, thoron and progeny measurements. Radiat Prot Dosimetry 167:22–28. https://doi.org/10.1093/rpd/ncv215

    Article  CAS  PubMed  Google Scholar 

  17. Prasad M, Rawat M, Dangwal A et al (2015) Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique. Radiat Prot Dosimetry 167:102–106. https://doi.org/10.1093/rpd/ncv224

    Article  CAS  PubMed  Google Scholar 

  18. Prasad M, Rawat M, Dangwal A et al (2016) Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2015.10.017

    Article  PubMed  Google Scholar 

  19. Ramola RC, Prasad M, Kandari T et al (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep. https://doi.org/10.1038/srep31061

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kandari T, Aswal S, Prasad M et al (2016) Estimation of annual effective dose from radon concentration along Main Boundary Thrust (MBT) in Garhwal Himalaya. J Radiat Res Appl Sci 9:228–233. https://doi.org/10.1016/j.jrras.2015.10.005

    Article  CAS  Google Scholar 

  21. Kandari T, Aswal S, Prasad M et al (2016) Study of radiation exposure due to radon, thoron and their progeny in the indoor environment of Rajpur region of Uttarakhand Himalaya. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncw059

    Article  PubMed  Google Scholar 

  22. Pant P, Kandari T, Prasad M, Ramola RC (2016) A comparative study of diurnal variation of radon and thoron concentrations in indoor environment. Radiat Prot Dosimetry 171:212–216. https://doi.org/10.1093/rpd/ncw061

    Article  CAS  PubMed  Google Scholar 

  23. Prasad M, Rawat M, Dangwal A et al (2016) Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and tons valleys of Garhwal Himalaya. Radiat Prot Dosimetry 171:187–191. https://doi.org/10.1093/rpd/ncw055

    Article  CAS  PubMed  Google Scholar 

  24. Prasad M, Bossew P, Anil Kumar G et al (2018) Dose assessment from the exposure to attached and unattached progeny of radon and thoron in indoor environment. Acta Geophys. https://doi.org/10.1007/s11600-018-0111-8

    Article  Google Scholar 

  25. Pant P, Kandari T, Prasad M et al (2018) Continuous measurement of equilibrium equivalent radon/thoron concentration using time-integrated flow-mode grab sampler. Acta Geophys. https://doi.org/10.1007/s11600-018-0163-9

    Article  Google Scholar 

  26. Ramola RC, Prasad M (2020) Significance of thoron measurements in indoor environment. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106453

    Article  PubMed  Google Scholar 

  27. Bourai AA, Aswal S, Dangwal A et al (2013) Measurements of radon flux and soil-gas radon concentration along the Main Central Thrust, Garhwal Himalaya, using SRM and RAD7 detectors. Acta Geophys 61:950–957. https://doi.org/10.2478/s11600-013-0132-2

    Article  Google Scholar 

  28. Yadav M, Prasad M, Joshi V et al (2016) A comparative study of radium content and radon exhalation rate from soil samples using active and passive techniques. Radiat Prot Dosimetry 171:254–256. https://doi.org/10.1093/rpd/ncw069

    Article  CAS  PubMed  Google Scholar 

  29. Kandari T, Prasad M, Pant P et al (2018) Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya. Acta Geophys 66:1243–1248. https://doi.org/10.1007/s11600-018-0158-6

    Article  Google Scholar 

  30. Kumar A, Singh P, Semwal P et al (2021) Study of primordial radionuclides and radon/thoron exhalation rates in Bageshwar region of Kumaun Himalaya, India. J Radioanal Nucl Chem 328:1361–1367. https://doi.org/10.1007/s10967-020-07582-y

    Article  CAS  Google Scholar 

  31. Panwar P, Prasad M, Ramola RC (2021) Study of soil-gas and indoor radon concentration in a test village at Tehri Garhwal, India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-07901-x

    Article  Google Scholar 

  32. Ramola RC, Gusain GS, Badoni M et al (2008) 226Ra, 232Th and 40K contents in soil samples from Garhwal Himalaya, India, and its radiological implications. J Radiol Prot 28:379–385. https://doi.org/10.1088/0952-4746/28/3/008

    Article  CAS  PubMed  Google Scholar 

  33. Ramola RC, Prasad G, Prasad Y (2007) Radon emanation from soil and groundwater and surface gamma dose rate in Budhakedar, Garhwal Himalayas, India. Indoor and Built Environment 16:83–88. https://doi.org/10.1177/1420326X06074668

    Article  CAS  Google Scholar 

  34. Ramola RC, Prasad G (2004) A Survey of Surface γ-Dose Rate in Relation to Radon Concentrations in Soil and Spring Water at Budhakedar, Tehri Garhwal (Uttaranchal). National Symposium On Environment

  35. Yadav M, Rawat M, Dangwal A et al (2014) Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem 302:869–873. https://doi.org/10.1007/s10967-014-3277-9

    Article  CAS  Google Scholar 

  36. Yadav M, Rawat M, Dangwal A et al (2015) Analysis of natural radionuclides in soil samples of Purola area of Garhwal Himalaya, India. Radiat Prot Dosimetry 167:215–218. https://doi.org/10.1093/rpd/ncv247

    Article  CAS  PubMed  Google Scholar 

  37. Prasad M, Ranga V, Kumar GA, Ramola RC (2020) Radiological impact assessment of soil and groundwater of himalayan regions in Uttarakhand, India. J Radioanal Nucl Chem 323:1269–1282. https://doi.org/10.1007/s10967-019-06827-9

    Article  CAS  Google Scholar 

  38. Yadav M, Prasad M, Dutt S, Ramola RC (2022) Variation of natural radioactivity in soil and water samples of Garhwal Himalaya, India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08147-3

    Article  Google Scholar 

  39. Rautela BS, Yadav M, Bourai AA et al (2012) Study of natural radionuclide and absorbed gamma dose in ukhimath area of garhwal Himalaya, India. Radiat Prot Dosimetry 152:58–61. https://doi.org/10.1093/rpd/ncs187

    Article  CAS  PubMed  Google Scholar 

  40. Choubey VM, Ramola RC (1997) Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environ Geol 32:258–262. https://doi.org/10.1007/s002540050215

    Article  CAS  Google Scholar 

  41. Sezgin Z, Yüksel N, Baykara T (2006) Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 64:261–268. https://doi.org/10.1016/j.ejpb.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Thivya C, Chidambaram S, Thilagavathi R et al (2015) Occurrence of high uranium and radon in hard rock aquifers of South India - evaluating the temporal and spatial trends. Groundw Sustain Dev 1:68–77. https://doi.org/10.1016/j.gsd.2016.01.003

    Article  Google Scholar 

  43. Prasad M, Kumar GA, Sahoo BK, Ramola RC (2018) A comprehensive study of radon levels and associated radiation doses in Himalayan groundwater. Acta Geophys 66:1223–1231. https://doi.org/10.1007/s11600-018-0135-0

    Article  Google Scholar 

  44. Prasad M, Semwal P, Panwar P et al (2022) Uranium contamination in drinking water as a health concern in Uttarakhand, India. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08128-6

    Article  Google Scholar 

  45. Ravikumar P, Somashekar RK (2014) Determination of the radiation dose due to radon ingestion and inhalation. Int J Environ Sci Technol 11:493–508. https://doi.org/10.1007/s13762-013-0252-x

    Article  CAS  Google Scholar 

  46. Uttarkashi D, Uttarakhand Govt., Geology and mining unit (2020) District Survey Report, Silica Sand, Uttarkashi, Uttarakhand. Uttarkashi

  47. Bilham roger (2004) Earthquakes in India and Himalaya: tectonics, geodesy and history. Ann Geophys 47:839–858

    Google Scholar 

  48. Jade S, Mukul M, Bhattacharyya AK et al (2007) Estimates of interseismic deformation in Northeast India from GPS measurements. Earth Planet Sci Lett 263:221–234. https://doi.org/10.1016/j.epsl.2007.08.031

    Article  CAS  Google Scholar 

  49. Jade S, Bhatt BC, Yang Z et al (2004) GPS measurements from the Ladakh Himalaya, India: preliminary tests of plate-like or continuous deformation in Tibet. Bull Geol Soc Am 116:1385–1391. https://doi.org/10.1130/B25357.1

    Article  Google Scholar 

  50. Ramola RC, Prasad Y, Prasad G et al (2008) Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2008.04.006

    Article  PubMed  Google Scholar 

  51. Ramola RC (2014) A study of radon exhalation rates from water samples by using Liquid Scintillation Counter

  52. Operational M (2015) Portable Radon Monitor-Smart RnDuo operational manual of Portable Radon Monitor-Smart RnDuo. Portable Radon Monitor-Smart RnDuo CONTENT

  53. UNSCEAR Sources and effects of ionizing radiation : United Nations Committee on the Effects of Atomic Radiation : UNSCEAR 1993 report to the General Assembly, with scientific annexes. United Nations, New York

  54. SOURCES AND EFFECTS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation (2000) UNSCEAR 2000 Report to the General Assembly. SOURCES UNITED NATIONS, with Scientific Annexes VOLUME I

    Google Scholar 

  55. Ramola RC (1955) Assessment of health risk due to radon and its daughter product in the lower atmosphere. Curr Sci 73:8–9

    Google Scholar 

  56. Prasad M, Kumar GA, Sahoo SK, Ramola RC (2019) Health risks associated with the exposure to uranium and heavy metals through potable groundwater in Uttarakhand state of India. J Radioanal Nucl Chem 319:13–21. https://doi.org/10.1007/s10967-018-6281-7

    Article  CAS  Google Scholar 

  57. United Nations. Scientific Committee on the Effects of Atomic Radiation (2010) Sources and effects of ionizing radiation : United Nations Scientific Committee on the Effects of Atomic Radiation : UNSCEAR 2008 report to the General Assembly, with scientific annexes. United Nations

  58. Eckerman K, Harrison J, Menzel GH, Clement HC (2012) Annals of the ICRP Compendium of Dose Coefficients based on ICRP Publication 60

  59. Institute of Medicine (2005) Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC. The National Academies Press

  60. Li WB, Karpas Z, Salonen L et al (2009) A compartmental model of Uranium in Human hair for protracted ingestion of natural uranium in drinking Water. Health Phys 96:636–645

    Article  CAS  PubMed  Google Scholar 

  61. Mehra R, Kaur S, Chand S et al (2021) Dosimetric assessment of primordial radionuclides in soil and groundwater of Sikar district, Rajasthan. J Radioanal Nucl Chem 330:1605–1620. https://doi.org/10.1007/s10967-021-07998-0

    Article  CAS  Google Scholar 

  62. UNSCEAR SOURCES AND EFFECTS OF IONIZING RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes VOLUME I: SOURCES UNITED NATIONS. New York

  63. Taskin H, Karavus M, Ay P et al (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  64. Wu YY, Ma YZ, Cui HX et al (2014) Radon concentrations in drinking water in Beijing city, China and contribution to radiation dose. Int J Environ Res Public Health 11:11121–11131. https://doi.org/10.3390/ijerph111111121

    Article  PubMed  PubMed Central  Google Scholar 

  65. Marques AL, Dos Santos W, Geraldo LP (2004) Direct measurements of radon activity in water from various natural sources using nuclear track detectors. Appl Radiat Isot 60:801–804. https://doi.org/10.1016/j.apradiso.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  66. Akar Tarim U, Gurler O, Akkaya G et al (2012) Evaluation of radon concentration in well and tap waters in Bursa, Turkey. Radiat Prot Dosimetry 150:207–212. https://doi.org/10.1093/rpd/ncr394

    Article  CAS  PubMed  Google Scholar 

  67. Cho JS, Ahn JK, Kim HC, Lee DW (2004) Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. J Environ Radioact 75:105–112. https://doi.org/10.1016/j.jenvrad.2003.06.002

    Article  CAS  PubMed  Google Scholar 

  68. Sarrou I, Pashalidis I (2003) Radon levels in Cyprus. J Environ Radioact 68:269–277. https://doi.org/10.1016/S0265-931X(03)00066-3

    Article  CAS  PubMed  Google Scholar 

  69. Nikolopoulos D, Louizi A (2008) Study of indoor radon and radon in drinking water in Greece and Cyprus: implications to exposure and dose. Radiat Meas 43:1305–1314. https://doi.org/10.1016/j.radmeas.2008.03.043

    Article  CAS  Google Scholar 

  70. Otwoma D, Mustaphai A (1998) 0 Note MEASUREMENT OF 222Rn CONCENTRATION IN KENYAN GROUNDWATER

  71. Abdallah SM, Habib RR, Nuwayhid RY et al (2007) Radon measurements in well and spring water in Lebanon. Radiat Meas 42:298–303. https://doi.org/10.1016/j.radmeas.2006.11.004

    Article  CAS  Google Scholar 

  72. Amin RM (2014) IPA-Under Creative Commons license 3.0 evaluation of radon gas concentration in the drinking water and dwellings of south-west Libya, using CR-39 detectors. Int J Environ Sci. https://doi.org/10.6088/ijes.20140400005

    Article  Google Scholar 

  73. Nasir T, Shah M (2012) Measurement of Annual effective doses of Radon from drinking Water and Dwellings by CR-39 track detectors in Kulachi City of Pakistan. J Basic Appl Sci 8:528–536

    Article  CAS  Google Scholar 

  74. Rani A, Mehra R, Duggal V (2013) Radon monitoring in groundwater samples from some areas of northern Rajasthan, India, using a RAD7 detector. Radiat Prot Dosimetry 153:496–501. https://doi.org/10.1093/rpd/ncs130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Uttarakhand State Council for Science and Technology (UCOST), Dehradun, Uttarakhand, India for financial support in the form of a research project. The author also extends their thanks to Nuclear Research Laboratory, H.N.B. Garhwal University, BadshahiThaul Campus, Tehri Garhwal, Uttarakhand, India extending their laboratory facilities for conducting the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pal Singh.

Ethics declarations

Conflict of interest

The authors declare that they don’t have any conflict of interest regarding this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.P., Chandra, S., Prasad, M. et al. Estimation of radiation dose due to ingestion of radon in water samples of Garhwal Himalaya, India. J Radioanal Nucl Chem (2023). https://doi.org/10.1007/s10967-023-09002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-023-09002-3

Keywords

Navigation