Skip to main content
Log in

On the interpretation of Mössbauer isomer shifts of iron-organic compounds

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analysis of the available data for several classes of homo- and heteroleptic iron-organic compounds has shown that coefficient ∇IS/aID = 0.04 mm s−1 pm−1 can be applied to describe the interrelation between the Mössbauer isomer shift and average interatomic distance between iron and the atoms of its coordination polyhedron. An additional increment was used to describe changes in the isomer shift that are not related to changes in the environment of iron or in the corresponding interatomic distances. This increment characterizes the filling of hybridized 4s4pm3dn orbitals with electrons. To calculate the increment, the value of 1.4 mm s−1 was used, which characterizes the difference between isomer shifts of iron with fully filled and half-filled hybridized shells. To compare the isomer shifts of iron compounds with ligands of different sizes, the corrections for these sizes were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Difference related to an equal aIDFe-X value using the ∇IS/aID coefficient.

  2. At this stage, we do not consider such substances as ferrocene and its derivatives, other compounds with η-bonds, iron adducts with fullerene and other forms of elemental carbon, as well as compounds in which the numbers and lengths of directional chemical bonds are difficult to determine.

  3. After the manuscript had been reviewed, we found a few more examples, which were added to Table 3 and to Table 4 (lines 21–24) without discussion in the text.

References

  1. Dedushenko SK, Perfiliev YD (2022) On the correlation of the 57Fe Mӧssbauer isomer shift and some structural parameters of a substance. Hyperfine Interact 243:15. https://doi.org/10.1007/s10751-022-01795-1

    Article  CAS  Google Scholar 

  2. Bill E (2020) 57Fe-Mössbauer spectroscopy and basic interpretation of Mössbauer parameters. Practical approaches to biological inorganic chemistry. Elsevier, Armsterdam, pp 201–228. https://doi.org/10.1016/b978-0-444-64225-7.00006-7

    Chapter  Google Scholar 

  3. Neese F, Petrenko T (2011) Quantum chemistry and Mössbauer spectroscopy. Mössbauer spectroscopy and transition metal chemistry. Springer, Berlin, pp 137–199. https://doi.org/10.1007/978-3-540-88428-6_5

    Chapter  Google Scholar 

  4. Kuzmann E, Homonnay Z, Klencsár Z, Szalay R (2021) 57Fe Mössbauer spectroscopy as a tool for study of spin states and magnetic interactions in inorganic chemistry. Molecules 26:1062. https://doi.org/10.3390/molecules26041062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamnev AA, Tugarova AV (2021) Bioanalytical applications of Mössbauer spectroscopy. Russ Chem Rev 90:1415–1453. https://doi.org/10.1070/rcr5006

    Article  Google Scholar 

  6. Fateeva A, Guillou N, Devic T (2023) Insightful contribution of 57Fe Mössbauer spectrometry (and of Jean-Marc Grenèche) to the field of iron metal organic frameworks. J Mater Res 38:1007–1018. https://doi.org/10.1557/s43578-022-00772-2

    Article  CAS  Google Scholar 

  7. Scepaniak JJ, Vogel CS, Khusniyarov MM, Heinemann FW, Meyer K, Smith JM (2011) Synthesis, structure, and reactivity of an iron(V) nitride. Science 331:1049–1052. https://doi.org/10.1126/science.1198315

    Article  CAS  PubMed  Google Scholar 

  8. Martinez JL, Lutz SA, Yang H, Xie J, Telser J, Hoffman BM, Carta V, Pink M, Losovyj Y, Smith JM (2020) Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex. Science 370:356–359. https://doi.org/10.1126/science.abd3054

    Article  CAS  PubMed  Google Scholar 

  9. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The cambridge structural database. Acta Crystallogr Sect B Struct Sci, Cryst Eng Mater 72:171–179. https://doi.org/10.1107/s2052520616003954

    Article  CAS  Google Scholar 

  10. Ouyang Z, Cheng J, Li L, Bao X, Deng L (2016) High-spin iron(I) and iron(0) dinitrogen complexes supported by N-heterocyclic carbene ligands. Chem Eur J 22:14162–14165. https://doi.org/10.1002/chem.201603390

    Article  CAS  PubMed  Google Scholar 

  11. Vogel C, Heinemann FW, Sutter J, Anthon C, Meyer K (2008) An iron nitride complex. Angew Chem Int Ed 47:2681–2684. https://doi.org/10.1002/anie.200800600

    Article  CAS  Google Scholar 

  12. Aghazada S, Miehlich M, Messelberger J, Heinemann FW, Munz D, Meyer K (2019) A terminal iron nitrilimine complex: accessing the terminal nitride through diazo N−N bond cleavage. Angew Chem Int Ed 58:18547–18551. https://doi.org/10.1002/anie.201910428

    Article  CAS  Google Scholar 

  13. Keilwerth M, Grunwald L, Mao W, Heinemann FW, Sutter J, Bill E, Meyer K (2021) Ligand tailoring toward an air-stable iron(V) nitrido complex. J Am Chem Soc 143:1458–1465. https://doi.org/10.1021/jacs.0c11141

    Article  CAS  PubMed  Google Scholar 

  14. Vogel CS, Heinemann FW, Khusniyarov MM, Meyer K (2010) Unexpected reactivity resulting from modifications of the ligand periphery: synthesis, structure, and spectroscopic properties of iron complexes of new tripodal N-heterocyclic carbene (NHC) ligands. Inorg Chim Acta 364:226–237. https://doi.org/10.1016/j.ica.2010.07.039

    Article  CAS  Google Scholar 

  15. Käß M, Hohenberger J, Adelhardt M, Zolnhofer EM, Mossin S, Heinemann FW, Sutter J, Meyer K (2013) Synthesis and characterization of divalent manganese, iron, and cobalt complexes in tripodal phenolate/N-heterocyclic carbene ligand environments. Inorg Chem 53:2460–2470. https://doi.org/10.1021/ic4024053

    Article  CAS  PubMed  Google Scholar 

  16. Valdez-Moreira JA, Thorarinsdottir AE, DeGayner JA, Lutz SA, Chen C-H, Losovyj Y, Pink M, Harris TD, Smith JM (2019) Strong π-backbonding enables record magnetic exchange coupling through cyanide. J Am Chem Soc 141:17092–17097. https://doi.org/10.1021/jacs.9b09445

    Article  CAS  PubMed  Google Scholar 

  17. Martinez JL, Lutz SA, Beagan DM, Gao X, Pink M, Chen C-H, Carta V, Moënne-Loccoz P, Smith JM (2020) Stabilization of the dinitrogen analogue, phosphorus nitride. ACS Cent Sci 6:1572–1577. https://doi.org/10.1021/acscentsci.0c00944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan Y, Cheng J, Gao Y, Shi M, Deng L (2018) Iron dinitrogen complexes supported by Tris(NHC)borate ligand: synthesis, characterization, and reactivity study. Acta Chimica Sinica. https://doi.org/10.6023/a18030095

    Article  Google Scholar 

  19. Scepaniak JJ, Harris TD, Vogel CS, Sutter J, Meyer K, Smith JM (2011) Spin crossover in a four-coordinate iron(II) complex. J Am Chem Soc 133:3824–3827. https://doi.org/10.1021/ja2003473

    Article  CAS  PubMed  Google Scholar 

  20. Nieto I, Ding F, Bontchev RP, Wang H, Smith JM (2008) Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex. J Am Chem Soc 130:2716–2717. https://doi.org/10.1021/ja0776834

    Article  CAS  PubMed  Google Scholar 

  21. Scepaniak JJ, Fulton MD, Bontchev RP, Duesler EN, Kirk ML, Smith JM (2008) Structural and spectroscopic characterization of an electrophilic iron nitrido complex. J Am Chem Soc 130:10515–10517. https://doi.org/10.1021/ja8027372

    Article  CAS  PubMed  Google Scholar 

  22. Bucinsky L, Breza M, Lee W-T, Hickey AK, Dickie DA, Nieto I, DeGayner JA, Harris TD, Meyer K, Krzystek J, Ozarowski A, Nehrkorn J, Schnegg A, Holldack K, Herber RH, Telser J, Smith JM (2017) Spectroscopic and computational studies of spin states of iron(IV) nitrido and imido complexes. Inorg Chem 56:4751–4768. https://doi.org/10.1021/acs.inorgchem.7b00512

    Article  CAS  Google Scholar 

  23. Gao Y, Carta V, Pink M, Smith JM (2021) Catalytic carbodiimide guanylation by a nucleophilic, high spin iron(II) imido complex. J Am Chem Soc 143:5324–5329. https://doi.org/10.1021/jacs.1c02068

    Article  CAS  PubMed  Google Scholar 

  24. Neate PGN, Greenhalgh MD, Brennessel WW, Thomas SP, Neidig ML (2020) TMEDA in iron-catalyzed hydromagnesiation: formation of Iron(II)-alkyl species for controlled reduction to alkene-stabilized iron(0). Angew Chem Int Ed 59:17070–17076. https://doi.org/10.1002/anie.202006639

    Article  CAS  Google Scholar 

  25. Ung G, Rittle J, Soleilhavoup M, Bertrand G, Peters JC (2014) Two-coordinate Fe0 and Co0 complexes supported by cyclic (alkyl)(amino)carbenes. Angew Chem Int Ed 53:8427–8431. https://doi.org/10.1002/anie.201404078

    Article  CAS  Google Scholar 

  26. Mo Z, Ouyang Z, Wang L, Fillman KL, Neidig ML, Deng L (2014) Two- and three-coordinate formal iron(I) compounds featuring monodentate aminocarbene ligands. Org Chem Front 1:1040–1044. https://doi.org/10.1039/c4qo00175c

    Article  CAS  Google Scholar 

  27. Samuel PP, Mondal KC, Amin Sk N, Roesky HW, Carl E, Neufeld R, Stalke D, Demeshko S, Meyer F, Ungur L, Chibotaru LF, Christian J, Ramachandran V, van Tol J, Dalal NS (2014) Electronic structure and slow magnetic relaxation of low-coordinate cyclic Alkyl(amino) carbene stabilized Iron(I) complexes. J Am Chem Soc 136:11964–11971. https://doi.org/10.1021/ja5043116

    Article  CAS  PubMed  Google Scholar 

  28. Ouyang Z, Du J, Wang L, Kneebone JL, Neidig ML, Deng L (2015) Linear and T-shaped iron(I) complexes supported by n-heterocyclic carbene ligands: synthesis and structure characterization. Inorg Chem 54:8808–8816. https://doi.org/10.1021/acs.inorgchem.5b01522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouyang Z, Meng Y, Cheng J, Xiao J, Gao S, Deng L (2016) Three- and four-coordinate homoleptic Iron(I)–NHC complexes: synthesis and characterization. Organometallics 35:1361–1367. https://doi.org/10.1021/acs.organomet.6b00047

    Article  CAS  Google Scholar 

  30. Wolford NJ, Muñoz SB, Neate PGN, Brennessel WW, Neidig ML (2021) NHC effects on reduction dynamics in iron-catalyzed organic transformations. Chem–A Eur J 27:13651–13658. https://doi.org/10.1002/chem.202102070

    Article  CAS  Google Scholar 

  31. Liu Y, Xiao J, Wang L, Song Y, Deng L (2015) Carbon-carbon bond formation reactivity of a four-coordinate NHC-supported iron(II) phenyl compound. Organometallics 34:599–605. https://doi.org/10.1021/om501061b

    Article  CAS  Google Scholar 

  32. Liu Y, Luo L, Xiao J, Wang L, Song Y, Qu J, Luo Y, Deng L (2015) Four-coordinate iron(II) diaryl compounds with monodentate N-heterocyclic carbene ligation: synthesis, characterization, and their tetrahedral-square planar isomerization in solution. Inorg Chem 54:4752–4760. https://doi.org/10.1021/acs.inorgchem.5b00138

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Cheng J, Deng L (2017) A square planar iron(II) biphenyl-2,2′-diyl complex with NHC ligation: synthesis, characterization, and its reactivity toward unsaturated organic substrates. Inorg Chim Acta 460:49–54. https://doi.org/10.1016/j.ica.2016.08.028

    Article  CAS  Google Scholar 

  34. Kjær KS, Kaul N, Prakash O, Chábera P, Rosemann NW, Honarfar A, Gordivska O, Fredin LA, Bergquist K-E, Häggström L, Ericsson T, Lindh L, Yartsev A, Styring S, Huang P, Uhlig J, Bendix J, Strand D, Sundström V, Persson P, Lomoth R, Wärnmark K (2019) Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363:249–253. https://doi.org/10.1126/science.aau7160

    Article  CAS  PubMed  Google Scholar 

  35. Prakash O, Chábera P, Rosemann NW, Huang P, Häggström L, Ericsson T, Strand D, Persson P, Bendix J, Lomoth R, Wärnmark K (2020) A Stable Homoleptic Organometallic Iron(IV) Complex. Chem A Eur J 26:12728–12732. https://doi.org/10.1002/chem.202002158

    Article  CAS  Google Scholar 

  36. Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, Honarfar A, Essén S, Fredin LA, Harlang TCB, Kjær KS, Handrup K, Ericson F, Tatsuno H, Morgan K, Schnadt J, Häggström L, Ericsson T, Sobkowiak A, Lidin S, Huang P, Styring S, Uhlig J, Bendix J, Lomoth R, Sundström V, Persson P, Wärnmark K (2017) A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543:695–699. https://doi.org/10.1038/nature21430

    Article  CAS  PubMed  Google Scholar 

  37. Menil F (1985) Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→ Fe) (where X is O or F and T any element with a formal positive charge). J Phys Chem Solids 46:763–789. https://doi.org/10.1016/0022-3697(85)90001-0

    Article  CAS  Google Scholar 

  38. LaPointe AM (2003) Fe[C(SiMe3)3]2: synthesis and reactivity of a monomeric homoleptic iron(II) alkyl complex. Inorg Chim Acta 345:359–362. https://doi.org/10.1016/s0020-1693(02)01309-9

    Article  CAS  Google Scholar 

  39. Zadrozny JM, Xiao DJ, Long JR, Atanasov M, Neese F, Grandjean F, Long GJ (2013) Mössbauer spectroscopy as a probe of magnetization dynamics in the linear iron(I) and iron(II) complexes [Fe(C(SiMe3)3]2]1–/0. Inorg Chem 52:13123–13131. https://doi.org/10.1021/ic402013n

    Article  CAS  PubMed  Google Scholar 

  40. Zadrozny JM, Xiao DJ, Atanasov M, Long GJ, Grandjean F, Neese F, Long JR (2013) Magnetic blocking in a linear iron(I) complex. Nat Chem 5:577–581. https://doi.org/10.1038/nchem.1630

    Article  CAS  PubMed  Google Scholar 

  41. Casitas A, Rees JA, Goddard R, Bill E, DeBeer S, Fürstner A (2017) Two exceptional homoleptic iron(IV) tetraalkyl complexes. Angew Chem Int Ed 56:10108–10113. https://doi.org/10.1002/anie.201612299

    Article  CAS  Google Scholar 

  42. Lewis RA, Smiles DE, Darmon JM, Stieber SCE, Wu G, Hayton TW (2013) Reactivity and mössbauer spectroscopic characterization of an Fe(IV) Ketimide Complex and Reinvestigation of an Fe(IV) Norbornyl Complex. Inorg Chem 52:8218–8227. https://doi.org/10.1021/ic401096p

    Article  CAS  PubMed  Google Scholar 

  43. Alonso PJ, Arauzo AB, Forniés J, García-Monforte MA, Martín A, Martínez JI, Menjón B, Rillo C, Sáiz-Garitaonandia JJ (2006) A square-planar organoiron(III) compound with a spin-admixed state. Angew Chem Int Ed 45:6707–6711. https://doi.org/10.1002/anie.200601774

    Article  CAS  Google Scholar 

  44. Gerss MH, Jeitschko W, Boonk L, Nientiedt J, Grobe J, Mörsen E, Leson A (1987) Preparation and crystal structure of superconducting Y2FeC4 and isotypic lanthanoid iron carbides. J Solid State Chem 70:19–28. https://doi.org/10.1016/0022-4596(87)90173-3

    Article  CAS  Google Scholar 

  45. Rohrmoser B, Eickerling G, Presnitz M, Scherer W, Eyert V, Hoffmann R-D, Rodewald UC, Vogt C, Pöttgen R (2007) Experimental electron density of the complex carbides Sc3[Fe(C2)2] and Sc3[Co(C2)2]. J Am Chem Soc 129:9356–9365. https://doi.org/10.1021/ja068137y

    Article  CAS  PubMed  Google Scholar 

  46. Greatrex R, Greenwood NN (1969) Mössbauer spectra, structure, and bonding in iron carbonyl derivatives. Discuss Faraday Soc 47:126–135. https://doi.org/10.1039/df9694700126

    Article  Google Scholar 

  47. Teller RG, Finke RG, Collman JP, Chin HB, Bau R (2002) Dependence of the tetracarbonylferrate(2-) geometry on counterion: crystal structures of dipotassium tetracarbonylferrate and bis(sodium crypt) tetracarbonylferrate [crypt = N(CH2CH2OCH2CH2OCH2CH2)3N]. J Am Chem Soc 99:1104–1111. https://doi.org/10.1021/ja00446a022

    Article  Google Scholar 

  48. Chin HB, Bau R (1976) The crystal structure of disodium tetracarbonylferrate. Distortion of the tetracarbonylferrate(2-) anion in the solid state. J Am Chem Soc 98:2434–2439. https://doi.org/10.1021/ja00425a009

    Article  CAS  Google Scholar 

  49. Ward RJ, Pividori D, Carpentier A, Tarlton ML, Kelley SP, Maron L, Meyer K, Walensky JR (2021) Isolation of a [Fe(CO)4]2–-bridged diuranium complex obtained via reduction of Fe(CO)5 with uranium(III). Organometallics 40:1411–1415. https://doi.org/10.1021/acs.organomet.1c00205

    Article  CAS  Google Scholar 

  50. Fortes AD, Parker SF (2022) Structure and spectroscopy of iron pentacarbonyl, Fe(CO)5. J Am Chem Soc 144:17376–17386. https://doi.org/10.1021/jacs.2c01469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rall JM, Schorpp M, Keilwerth M, Mayländer M, Friedmann C, Daub M, Richert S, Meyer K, Krossing I (2022) Synthesis and characterization of stable iron pentacarbonyl radical cation salts. Angewandte Chemie Int Edn. https://doi.org/10.1002/anie.202204080

    Article  Google Scholar 

  52. Finze M, Bernhardt E, Willner H, Lehmann CW, Aubke F (2005) Homoleptic, σ-bonded octahedral superelectrophilic metal carbonyl cations of Iron(II), Ruthenium(II), and Osmium(II). Part 2: syntheses and characterizations of [M(CO)6][BF4]2 (M = Fe, Ru, Os). Inorg Chem 44:4206–4214. https://doi.org/10.1021/ic0482483

    Article  CAS  PubMed  Google Scholar 

  53. Bernhardt E, Bley B, Wartchow R, Willner H, Bill E, Kuhn P, Sham IHT, Bodenbinder M, Bröchler R, Aubke F (1999) Hexakis(carbonyl)iron(II) undecafluorodiantimonate(V), [Fe(CO)6][Sb2F11]2, and -hexafluoroantimonate(V), [Fe(CO)6][SbF6]2, their syntheses, and spectroscopic and structural characterization by single crystal X-ray diffraction and normal coordinate analysis. J Am Chem Soc 121:7188–7200. https://doi.org/10.1021/ja990958y

    Article  CAS  Google Scholar 

  54. Bley B, Willner H, Aubke F (1997) Synthesis and spectroscopic characterization of Hexakis(carbonyl)iron(II) Undecafluorodiantimonate(V), [Fe(CO)6][Sb2F11]2. Inorg Chem 36:158–160. https://doi.org/10.1021/ic9608105

    Article  CAS  Google Scholar 

  55. Pierrot M, Kern R, Weiss R (1966) Structure cristalline de l’acide ferrocyanhydrique H4[Fe(CN)6]. Acta Crystallogr A 20:425–428. https://doi.org/10.1107/s0365110x66000975

    Article  CAS  Google Scholar 

  56. Garg AN, Goel PS (1969) Mössbauer effect evidence of hydrogen bonding in ferrocyanic acid. J Inorg Nucl Chem 31:697–702. https://doi.org/10.1016/0022-1902(69)80015-1

    Article  CAS  Google Scholar 

  57. Haser R, de Broin CE, Pierrot M (1972) Etude structurale de la série des hexacyanoferrates(II, III) d’hydrogène: H3+x [FeIIx FeIII1–x (CN)6] yH2O. I. Structures cristallines des phases hexagonales H, H3FeIII(CN)6 et H3CoIII(CN)6, par diffraction des rayons X et des neutrons. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 28:2530–2537. https://doi.org/10.1107/s0567740872006429

    Article  CAS  Google Scholar 

  58. Garg AN, Goel PS (1970) Mössbauer effect studies of alkali metal ferricyanides and hydrogen-bonded ferricyanic acid. J Inorg Nucl Chem 32:1547–1557. https://doi.org/10.1016/0022-1902(70)80642-x

    Article  CAS  Google Scholar 

  59. Brennessel WW, Ellis JE (2007) [Fe(CNXyl)4]2−: an isolable and structurally characterized homoleptic isocyanidemetalate dianion. Angew Chem Int Ed 46:598–600. https://doi.org/10.1002/anie.200603746

    Article  CAS  Google Scholar 

  60. Mokhtarzadeh CC, Margulieux GW, Carpenter AE, Weidemann N, Moore CE, Rheingold AL, Figueroa JS (2015) Synthesis and protonation of an encumbered iron tetraisocyanide dianion. Inorg Chem 54:5579–5587. https://doi.org/10.1021/acs.inorgchem.5b00730

    Article  CAS  PubMed  Google Scholar 

  61. Bassett J-M, Berry DE, Barker GK, Green M, Howard JAK, Stone FGA (1979) Chemistry of low-valent metal isocyanide complexes. Part 1 Synthesis of zerovalent iron and ruthenium complexes. Crystal and molecular structures of tetrakis(t-butyl isocyanide)(triphenylphosphine)ruthenium and pentakis(t-butyl isocyanide)iron. J Chem Soci Dalton Trans. https://doi.org/10.1039/dt9790001003

    Article  Google Scholar 

  62. Brennessel WW, Kucera BE, Young VG, Ellis JE (2019) Crystal structures and spectroscopic characterization of MBr2(CNXyl)n (M = Fe and Co, n = 4; M = Ni, n = 2; Xyl = 2,6-dimethylphenyl), and of formally zero-valent iron as a cocrystal of Fe(CNXyl)5 and Fe2(CNXyl)9. Acta Crystallogr Sect C Struct Chem 75:1118–1127. https://doi.org/10.1107/s205322961900963x

    Article  CAS  Google Scholar 

  63. Yamada Y, Kobayashi Y, Kubo MK, Mihara M, Nagatomo T, Sato W, Miyazaki J, Sato S, Kitagawa A (2013) In-beam Mössbauer spectra of 57Mn implanted into low-temperature solid Ar. Chem Phys Lett 567:14–17. https://doi.org/10.1016/j.cplett.2013.03.033

    Article  CAS  Google Scholar 

  64. Micklitz H, Barrett PH (1972) Charged state of 57Fe atoms following the decay of 57Co in solid xenon. Phys Rev Lett 28:1547–1550. https://doi.org/10.1103/PhysRevLett.28.1547

    Article  CAS  Google Scholar 

  65. Lee Y, Mankad NP, Peters JC (2010) Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron. Nat Chem 2:558–565. https://doi.org/10.1038/nchem.660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Citek C, Oyala PH, Peters JC (2019) Mononuclear Fe(I) and Fe(II) acetylene adducts and their reductive protonation to terminal Fe(IV) and Fe(V) carbynes. J Am Chem Soc 141:15211–15221. https://doi.org/10.1021/jacs.9b06987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ben Ali A, Trang Dang M, Grenèche J-M, Hémon-Ribaud A, Leblanc M, Maisonneuve V (2007) Synthesis, structure of [H3dien]·(MF6)·H2O (M=Cr, Fe) and 57Fe Mössbauer study of [H3dien]·(FeF6)·H2O. J Solid State Chem 180:1911–1917. https://doi.org/10.1016/j.jssc.2007.03.030

    Article  CAS  Google Scholar 

  68. James BD, Bakalova M, Liesegang J, Reiff WM, Hockless DCR, Skelton BW, White AH (1996) The hexachloroferrate(III) anion stabilized in hydrogen bonded packing arrangements. A comparison of the X-ray crystal structures and low temperature magnetism of tetrakis (methylammonium) hexachloroferrate(III) chloride (I) and tetrakis (hexamethylenediammonium) hexachloroferrate(III) tetrachloroferrate(III) tetrachloride (II). Inorg Chim Acta 247:169–174. https://doi.org/10.1016/0020-1693(95)04955-x

    Article  CAS  Google Scholar 

  69. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  70. García-Saiz A, de Pedro I, Migowski P, Vallcorba O, Junquera J, Blanco JA, Fabelo O, Sheptyakov D, Waerenborgh JC, Fernández-Díaz MT, Rius J, Dupont J, Gonzalez JA, Fernández JR (2014) Anion−π and halide-halide nonbonding interactions in a new ionic liquid based on imidazolium cation with three-dimensional magnetic ordering in the solid state. Inorg Chem 53:8384–8396. https://doi.org/10.1021/ic500882z

    Article  CAS  PubMed  Google Scholar 

  71. Thewalt U, Berhalter K, Neuse EW (1985) The crystal and molecular structure of acetonitrilechlorodicyclopentadienyltitanium tetrachloroferrate(III). Some Mössbauer and X-ray photoelectron spectroscopic data. Transition Met Chem 10:393–395. https://doi.org/10.1007/bf00618852

    Article  CAS  Google Scholar 

  72. Reis DM, Nunes GG, Sá EL, Friedermann GR, Mangrich AS, Evans DJ, Hitchcock PB, Leigh GJ, Soares JF (2004) Iron(iii) and titanium(iv) oxoalkoxide chemistry: synthetic, structural, magnetochemical and spectroscopic studies of [Ti33-OPri)2(μ-OPri)3(OPri)6][FeCl4] and [Fe55-O)(μ-OPri)8Cl5]. New J Chem 28:1168–1176. https://doi.org/10.1039/b403899a

    Article  CAS  Google Scholar 

  73. Goda S, Nikai M, Ito M, Hashizume D, Tamao K, Okazawa A, Kojima N, Fueno H, Tanaka K, Kobayashi Y, Matsuo T (2016) Synthesis and magnetic properties of linear two-coordinate monomeric Diaryliron(II) complexes bearing fused-ring bulky “rind” groups. Chem Lett 45:634–636. https://doi.org/10.1246/cl.160216

    Article  CAS  Google Scholar 

  74. Lutz SA, Hickey AK, Gao Y, Chen C-H, Smith JM (2020) Two-state reactivity in iron-catalyzed alkene isomerization confers σ-base resistance. J Am Chem Soc 142:15527–15535. https://doi.org/10.1021/jacs.0c07300

    Article  CAS  PubMed  Google Scholar 

  75. Fillman KL, Przyojski JA, Al-Afyouni MH, Tonzetich ZJ, Neidig ML (2015) A combined magnetic circular dichroism and density functional theory approach for the elucidation of electronic structure and bonding in three- and four-coordinate iron(II)–N-heterocyclic carbene complexes. Chem Sci 6:1178–1188. https://doi.org/10.1039/c4sc02791d

    Article  CAS  PubMed  Google Scholar 

  76. Danopoulos AA, Braunstein P, Wesolek M, Monakhov KY, Rabu P, Robert V (2012) Three-coordinate Iron(II) n-heterocyclic carbene alkyl complexes. Organometallics 31:4102–4105. https://doi.org/10.1021/om300245z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. S.V. Stepanov for numerous valuable pieces of advice and criticism, and to Dr. E.V. Bovina for her valuable help in presenting the structural formulas, as well as to Prof. A.A. Kamnev for his efforts to open our eyes to what we did not want to look at.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey K. Dedushenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedushenko, S.K., Perfiliev, Y.D. On the interpretation of Mössbauer isomer shifts of iron-organic compounds. J Radioanal Nucl Chem 332, 2613–2632 (2023). https://doi.org/10.1007/s10967-023-08933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08933-1

Keywords

Navigation