Skip to main content
Log in

Determination of optimum conditions for the extraction and separation of lanthanum, cerium, yttrium and thorium using Taguchi method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Taguchi method was applied to determine the optimum conditions for the extraction and separation of some lanthanides using three organic extractants. It was found that the optimum results were obtained with trioctylphosphine oxide (TOPO). The extraction efficiency and distribution coefficient of La(III), Ce(III), Y(III) and Th(IV) increased by increasing the salt concentration. Under these conditions 1 M HNO3, 0.1 M TOPO and 10–1 M KSCN, the extraction efficiency of all metals reached 85%. Based to the Pourbaix diagrams La3+, Ce3+, Y3+ and Th4+ were formed and the stoichiometry of the extracted complexes were \({\left[{\mathrm{Ln}\left({\mathrm{NO}}_{3}\right)}_{3}\cdot2\mathrm{TOPO}\right]}_{\mathrm{org}}\) and \({\left[{\mathrm{Th}\left({\mathrm{NO}}_{3}\right)}_{4}\cdot\mathrm{TOPO}\right]}_{\mathrm{org}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eliseeva SV, Bunzli JCG (2011) Rare earths: jewels for functional materials of the future. New J Chem 35(6):1165–1176. https://doi.org/10.1039/C0NJ00969E

    Article  CAS  Google Scholar 

  2. Palmieri MC, Volesky B, Garcia O (2002) Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy 67:31–36. https://doi.org/10.1016/S0304-386X(02)00133-0

    Article  CAS  Google Scholar 

  3. Abdo SM, Hagag MS, Ali AH et al (2022) Inclusion, occlusion and adsorption of rare earth elements from chloride media onto barite-gypsum composite. J Radioanal Nucl Chem 332:63–76. https://doi.org/10.1007/s10967-022-08669-4

    Article  CAS  Google Scholar 

  4. Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Miner Eng 41:97–114. https://doi.org/10.1016/j.mineng.2012.10.017

    Article  CAS  Google Scholar 

  5. Kumari A, Panda R, Jha MK, Kumar JR, Lee JY (2015) Process development to recover rare earth metals from monazite mineral: a review. Miner Eng 79:102–115. https://doi.org/10.1016/j.mineng.2015.05.003

    Article  CAS  Google Scholar 

  6. Ferdowsi A, Yoozbashizadeh H (2017) Solvent extraction of rare earth elements from a nitric acid leach solution of apatite by mixtures of tributyl phosphate and Di-(2-ethylhexyl) phosphoric acid. Metall Mater Trans B Process Metall Mater Process Sci 48:3380–3387. https://doi.org/10.1007/s11663-017-1086-6

    Article  CAS  Google Scholar 

  7. Shahr El-Din AM, El Afifi EM, Borai EH (2019) Purification of rare earth chloride liquor associated with high-grade monazite exploitation. J Radioanal Nucl Chem 319:1173–1184. https://doi.org/10.1007/s10967-018-6389-9

    Article  CAS  Google Scholar 

  8. Bilal M, Ihsanullah I, Younas M, Ul Hassan Shah M (2022) Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep Purif Technol 278:119510. https://doi.org/10.1016/j.seppur.2021.119510

    Article  CAS  Google Scholar 

  9. Rani P, Johar R, Jassal PS (2020) Adsorption of nickel (II) ions from wastewater using glutaraldehyde cross-linked magnetic chitosan beads: Isotherm, kinetics and thermodynamics. Water Sci Technol 82:2193–2202. https://doi.org/10.2166/wst.2020.459

    Article  CAS  PubMed  Google Scholar 

  10. Shahnaz K, Amirabbas Z, Mohammad P, Hossein F, Majid A, Mohammad I (2018) Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem Eng J 337:169–182. https://doi.org/10.1016/j.cej.2017.12.075

    Article  CAS  Google Scholar 

  11. Soukeur A, Szymczyk A, Berbar Y, Amara M (2021) Extraction of rare earth elements from waste products of phosphate industry. Sep Purif Technol 256:117857. https://doi.org/10.1016/j.seppur.2020.117857

    Article  CAS  Google Scholar 

  12. Habashi F (1997) Handbook of extractive metallurgy Edited by Fathi Habashi. III

  13. Crouse DJ, Brown KB (1959) Recovery of thorium, uranium, and rare earths from monazite sulfate liquors by the amine extraction (AMEX) process

  14. Dileep CS, Jagasia P, Das SK et al (2013) Estimation of 90Sr in reprocessing streams using pre-packed extraction chromatographic column of 4,4’(5’)-bis(tert-butylcyclohexano)-18- crown-6 impregnated on amberlite XAD-7. J Radioanal Nucl Chem 298:105–110. https://doi.org/10.1007/s10967-013-2534-7

    Article  CAS  Google Scholar 

  15. Biswas S, Rupawate VH, Hareendran KN, Roy SB (2014) Transport of U(VI) from sulphuric acid medium across supported liquid membrane (SLM) containing di-(2-ethylhexyl) phosphoric acid (D2EHPA)/n-dodecane as a carrier. J Radioanal Nucl Chem 299:1199–1207. https://doi.org/10.1007/s10967-013-2872-5

    Article  CAS  Google Scholar 

  16. García AC, Latifi M, Amini A, Chaouki J (2020) Separation of radioactive elements from rare earth element-bearing minerals. Metals (Basel) 10:1–22. https://doi.org/10.3390/met10111524

    Article  CAS  Google Scholar 

  17. Li D, Zuo Y, Meng S (2004) Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. J Alloys Compd 374:431–433. https://doi.org/10.1016/j.jallcom.2003.11.055

    Article  CAS  Google Scholar 

  18. Kumar JR, Kim JS, Lee JY, Yoon HS (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760

    Article  CAS  Google Scholar 

  19. El-Nadi YA (2017) Solvent extraction and its applications on ore processing and recovery of metals: classical approach. Sep Purif Rev 46:195–215. https://doi.org/10.1080/15422119.2016.1240085

    Article  CAS  Google Scholar 

  20. Belova VV, Voshkin AA, Kholkin AI, Payrtman AK (2009) Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants. Hydrometallurgy 97:198–203. https://doi.org/10.1016/j.hydromet.2009.03.004

    Article  CAS  Google Scholar 

  21. Metwally E, Saleh AS, El-Naggar HA (2005) Extraction and Separation of Uranium (VI) and Thorium (IV) Using Tri-n-dodecylamine Impregnated Resins. J Nucl Radiochem Sci 6:119–126

    Article  CAS  Google Scholar 

  22. Zhu Z, Pranolo Y, Cheng CY (2015) Separation of uranium and thorium from rare earths for rare earth production - a review. Miner Eng 77:185–196. https://doi.org/10.1016/j.mineng.2015.03.012

    Article  CAS  Google Scholar 

  23. Menzies IA, Rigby F (2007) Separation of thorium from uranium and rare-earth elements by solvent extraction with tri - n - butyl phosphate - xylene. J Appl Chem 11:104–113. https://doi.org/10.1002/jctb.5010110305

    Article  Google Scholar 

  24. Gupta B, Malik P, Deep A (2002) Extraction of uranium, thorium and lanthanides using Cyanex-923: their separations and recovery from monazite. J Radioanal Nucl Chem 251:451–456. https://doi.org/10.1023/A:1014890427073

    Article  CAS  Google Scholar 

  25. Pathak PN, Veeraraghavan R, Manchanda VK (1999) Separation of uranium and thorium using tris(2-ethylhexyl) phosphate as extractant. J Radioanal Nucl Chem 240:15–18. https://doi.org/10.1007/BF02349130

    Article  CAS  Google Scholar 

  26. Merritt RC (1971) The extractive metallurgy of uranium. Colorado School of Mines Research Institute, Library of Congress Catalog Card No. 71–157076

  27. Kim JS, Han KS, Kim SJ et al (2016) Synergistic extraction of uranium from Korean black shale ore leach liquors using amine with phosphorous based extractant systems. J Radioanal Nucl Chem 307:843–854. https://doi.org/10.1007/s10967-015-4327-7

    Article  CAS  Google Scholar 

  28. Antony J, Jiju Antony F (2001) Teaching the Taguchi method to industrial engineers. Work Study 50:141–149. https://doi.org/10.1108/00438020110391873

    Article  Google Scholar 

  29. Eskandari Nasab M, Milani SA, Sam A (2011) Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J Radioanal Nucl Chem 288:677–683. https://doi.org/10.1007/s10967-011-1008-z

    Article  CAS  Google Scholar 

  30. Eskandari Nasab M (2014) Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel 116:595–600. https://doi.org/10.1016/j.fuel.2013.08.043

    Article  CAS  Google Scholar 

  31. Ranjit K (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. A Wiley-Interscience Publication. Wiley, New York

    Google Scholar 

  32. Eskandari Nasab M, Sam A, Alamdar Milani S (2011) Determination of optimum process conditions for solvent extraction of thorium using Taguchi method. J Radioanal Nucl Chem 287:239–245. https://doi.org/10.1007/s10967-010-0857-1

    Article  CAS  Google Scholar 

  33. Dupont D, Depuydt D, Binnemans K (2015) Overview of the effect of salts on biphasic ionic liquid/water solvent extraction systems: anion exchange, mutual solubility, and thermomorphic properties. J Phys Chem B 119:6747–6757. https://doi.org/10.1021/acs.jpcb.5b02980

    Article  CAS  PubMed  Google Scholar 

  34. Kang B, Tang H, Zhao Z, Song S (2020) Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega 5:6229–6239. https://doi.org/10.1021/acsomega.0c00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jha MK, Kumari A, Panda R et al (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165:2–26. https://doi.org/10.1016/j.hydromet.2016.01.035

    Article  CAS  Google Scholar 

  36. Arrachart G, Couturier J, Dourdain S et al (2021) Recovery of rare earth elements (REEs) using ionic solvents. Processes. https://doi.org/10.3390/pr9071202

    Article  Google Scholar 

  37. Riaño S, Binnemans K (2015) Extraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem 17:2931–2942. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  38. Raiguel S, Depuydt D, Vander Hoogerstraete T et al (2017) Selective alkaline stripping of metal ions after solvent extraction by base-stable 1,2,3-triazolium ionic liquids. Dalt Trans 46:5269–5278. https://doi.org/10.1039/c7dt00624a

    Article  CAS  Google Scholar 

  39. Depuydt D, Van Den Bossche A, Dehaen W, Binnemans K (2017) Metal extraction with a short-chain imidazolium nitrate ionic liquid. Chem Commun 53:5271–5274. https://doi.org/10.1039/c7cc01685a

    Article  CAS  Google Scholar 

  40. Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    Article  CAS  Google Scholar 

  41. Sorensen KF (2014) Thorium Research in the Manhattan Project Era. Master's Thesis, University of Tennessee. https://trace.tennessee.edu/utk_gradthes/27

  42. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  43. Flett DS (2005) Principles and practices of solvent extraction. In: J Rydberg, M Cox, C Musikas, GR Choppin (eds) Second Edition, Revised and Expanded, Marcel Dekker, New York, 2004. 760 pp, ISBN 0 8247 5053 2. J Chem Technol Biotechnol 80:359–360. https://doi.org/10.1002/jctb.1219

  44. Reddy MLP, Prasada RT, Damodaran AD (1993) Liquid-liquid extraction processes for the separation and purification of rare earths. Miner Process Extr Metall Rev 12:91–113. https://doi.org/10.1080/08827509508935254

    Article  Google Scholar 

  45. Sahu SK, Mishra S (2015) Liquid–liquid extraction of Ce(III) from acidic nitrate medium using Cyanex 923 in kerosene. J Chem Technol Metall 50(3):255–261. https://doi.org/10.1080/01496395.2015.1088026

    Article  CAS  Google Scholar 

  46. El-Nadi YA, El-Hefny NE, Daoud JA (2007) Extraction of Lanthanum and samarium from nitrate medium by some commercial organophosphorus extractants. Solvent Extr Ion Exch 25:225–240. https://doi.org/10.1080/07366290601169485

    Article  CAS  Google Scholar 

  47. Reddy MLP, Varma RL, Ramamohan TR et al (1998) Cyanex 923 as an extractant for trivalent lanthanides and yttrium. Solvent Extr Ion Exch 16:795–812. https://doi.org/10.1080/07366299808934553

    Article  CAS  Google Scholar 

  48. Gupta B, Malik P, Deep A (2003) Solvent extraction and separation of tervalent Lanthanides and Yttrium using Cyanex 923. Solvent Extr Ion Exch 21:239–258. https://doi.org/10.1081/SEI-120018948

    Article  CAS  Google Scholar 

  49. Agarwal V, Safarzadeh MS, Galvin J (2018) Solvent extraction and separation of Y(III) from sulfate, nitrate and chloride solutions using PC88A diluted in kerosene. Miner Process Extr Metall Rev 39:258–265. https://doi.org/10.1080/08827508.2017.1415210

    Article  CAS  Google Scholar 

  50. Agarwal V, Safarzadeh MS, Galvin J (2021) A comparative study of the solvent extraction of lanthanum(III) from different acid solutions. Miner Process Extr Metall Trans Inst Min Metall 130:90–97. https://doi.org/10.1080/25726641.2019.1591066

    Article  CAS  Google Scholar 

  51. Eskandari Nasab M (2013) Synergistic extraction of uranium(VI) and thorium(IV) with mixtures of Cyanex272 and other organophosphorus ligands. J Radioanal Nucl Chem 298:1739–1747. https://doi.org/10.1007/s10967-013-2528-5

    Article  CAS  Google Scholar 

  52. Yoo H, Shin YH (2003) Technical Trends of Separation of Rare Earth Elements. KISTI Technical Trends Report

  53. Meera R, Varma RL, Reddy MLP (2004) Enhanced extraction of thorium(IV) and uranium(VI) with 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various neutral organophosphorus extractants. Radiochim Acta 92:17–23. https://doi.org/10.1524/ract.92.1.17.25402

    Article  CAS  Google Scholar 

  54. Biswas S, Pathak PN, Singh DK et al (2010) Synergistic extraction of uranium with mixtures of PC88A and neutral oxodonors. J Radioanal Nucl Chem 284:13–19. https://doi.org/10.1007/s10967-010-0479-7

    Article  CAS  Google Scholar 

  55. Reddy BV, Reddy LK, Reddy AS et al (1993) Solvent extraction of Er(III) and Lu(III) with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester in presence of some reagents. J Radioanal Nucl Chem Artic 172:167–179. https://doi.org/10.1007/BF02040673

    Article  CAS  Google Scholar 

  56. Rauta NK, Panda BS, Swain N, Ahemad MA (2021) Liquid-liquid extraction of Co (II) from nitrate solution using the mixture of TOPO and TOA. Der Chem Sin 12(12):55

    CAS  Google Scholar 

  57. Muthuchamy S, Nair VR, Matharana LN (2002) Application of solvent extraction technique for the separation of rare earths, thorium and uranium. In: Proceedings of international symposium on solvent extraction. September 26–27, Bhubaneswar, India.

Download references

Acknowledgements

Abdoul-Rachid Chaibou Yacouba gratefully acknowledge Türkiye Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdoul-Rachid Chaibou Yacouba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaibou Yacouba, AR., Oral, A.E., Sanda Bawa, A. et al. Determination of optimum conditions for the extraction and separation of lanthanum, cerium, yttrium and thorium using Taguchi method. J Radioanal Nucl Chem 332, 4807–4818 (2023). https://doi.org/10.1007/s10967-023-08908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08908-2

Keywords

Navigation