Skip to main content
Log in

An optimized methodology for the determination of the uranium chemical phases in micro-particles by Raman spectrometry within a scanning electron microscope

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We have developed a methodology based on micro-Raman spectrometry performed inside a SEM/EDS for the chemical phase analysis of uranium particles sampled with sticky carbon tapes. We demonstrate that the electronic scanning increases the Raman background of the carbon tapes and decreases the Raman intensities of uranium oxides. Moreover, the most oxidized compounds are reduced into UO2 when the laser power is too intense. Therefore, uranium particles should be localized with the briefest possible electronic scanning, laser power must be limited, and high-resolution imaging and elemental analysis by EDS of uranium particles must be performed after the in-SEM Raman analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Donohue DL (1998) Strengthening IAEA safeguards through environmental sampling and analysis. J Alloys Compd 217–273:11–18

    Article  Google Scholar 

  2. Donohue DL (2002) Strengthened nuclear safeguards. Anal Chem 74(1):28A–35A

    Article  CAS  Google Scholar 

  3. Donohue DL, Ciurapinski A, Cliff J, Rüdenauer F, Kuno T, Poths J (2008) Microscopic studies of spherical particles for nuclear safeguards. Appl Surf Sci 255:2561–2568

    Article  CAS  Google Scholar 

  4. Pidduck AJ, Houlton MR, Williams GM, Donohue DL (2006) Micro-analytical characterization of uranium particles in support of environmental sampling for safeguards. Proc Symp Int Safeguards, 16–20 October 2006, Vienna, pp 781–789

  5. Sweet LE, Blake TA, Henager CH, Hu S, Johnson TJ, Meier DE, Peper SM, Schwantes JM (2013) Investigation of the polymorphs and hydrolysis of uranium trioxide. J Radioanal Nucl Chem 296:105–110

    Article  CAS  Google Scholar 

  6. Ho DML, Manara D, Lindqvist-Reis P, Fanghänel T, Mayer K (2014) The use of different dispersive Raman spectrometers for the analysis of uranium compounds. Vib Spec 53:102–110

    Google Scholar 

  7. Stefaniak EA, Alsecz A, Sajo IE, Worobiec A, Mathé Z, Török S, Van Grieken R (2008) Recognition of uranium oxides in soil particulate matter by means of micro-raman spectrometry. J Nucl Mater 381:278–283

    Article  CAS  Google Scholar 

  8. Stefaniak EA, Alsecz A, Frost R, Mathé Z, Sajo IE, Török S, Worobiec A, Van Grieken R (2009) Combined SEM/EDX and micro-raman spectroscopy analysis of uranium minerals from a former uranium mine. J Hazard Mater 168:416–423

    Article  CAS  PubMed  Google Scholar 

  9. Pointurier F, Marie O (2010) Identification of the chemical forms of uranium compounds in micrometer-size particles by means of micro-Raman spectrometry and scanning electron microscope. Spectrochim Acta Part B 65:797–804

    Article  Google Scholar 

  10. Yomogida Y, Esaka F, Magara M (2017) Chemical state and isotope ratio analysis of individual uranium particles by a combination of micro-Raman spectroscopy and secondary ion mass spectrometry. Anal Methods 9:6261–6266

    Article  CAS  Google Scholar 

  11. Holmgren-Rondhal S, Pointurier F, Ahlinder A, Ramebäck H, Marie O, Ravat B, Delaunay F, Young E, Blagojevitch N, Hester JR, Thorogood G, Nelwamondo A, Ntsoane TP, Roberts SK, Holliday KS (2018) Comparing results of X-ray diffraction, micro-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise. J Radioanal Nucl Chem 315:395–408

    Article  Google Scholar 

  12. Kips R, Pidduck AJ, Houlton MR, Leenaers A, Mace JD, Marie O, Pointurier F, Stefaniak EA, Van den Taylor PDP, Van Espen P, Van Grieken R, Wellum R (2009) Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age. Spectrochim Acta B 64:199–207

    Article  Google Scholar 

  13. Stefaniak EA, Darchuk L, Sapundjiev D, Kips R, Aregbe Y, Van Grieken R (2013) New insights into UO2F2 particulate structure by micro-Raman spectroscopy. J Mol Struct 1040:206–212

    Article  CAS  Google Scholar 

  14. Villa-Aleman E, Wellon MS (2016) Characterization of UF4 with Raman spectroscopy. J Raman Spectrosc 47:865–870

    Article  CAS  Google Scholar 

  15. Pointurier F, Lelong C, Marie O (2020) Study of the chemical changes of µm-sized particles of uranium tetrafluoride (UF4) in environmental conditions by means of micro-Raman spectrometry. Vib Spec 110:103145

    Article  CAS  Google Scholar 

  16. Shinonaga T, Donohue D, Aigner H, Bürger S, Klose D, Kärkelä T, Zilliacus R, Auvinen A, Marie O, Pointurier F (2012) Production and characterization of plutonium dioxide particles as a quality control material for safeguards purposes. Anal Chem 84:2638–2646

    Article  CAS  PubMed  Google Scholar 

  17. Pointurier F, Ho DML, Manara D, Marie O, Fanghänel T, Mayer K (2019) Capabilities of micro-raman spectrometry for the identification of uranium ore concentrates from analysis of single particles. Vib Spec 103:102925

    Article  CAS  Google Scholar 

  18. Black L, Brooker A (2007) SEM–SCA: a combined SEM—Raman spectrometer for analysis of OPC clinker. Adv Appl Ceram 106:327–334

    Article  CAS  Google Scholar 

  19. Pointurier F, Marie O (2013) Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J Raman Spectrosc 44:1753–1759

    Article  CAS  Google Scholar 

  20. Stefaniak EA, Pointurier F, Marie O, Truyens J, Aregbe Y (2014) In-SEM Raman microspectroscopy coupled with EDX—a case study of uranium reference particles. Analyst 139:668–675

    Article  CAS  PubMed  Google Scholar 

  21. Middendorp R, Dürr M, Knott A, Pointurier F, Ferreira-Sanchez D, Samson V, Grolimund D (2017) Characterization of the aerosol-based synthesis of uranium particles as a potential reference material for microanalytical methods. Anal Chem 89:4721–4728

    Article  CAS  PubMed  Google Scholar 

  22. Neumeier S, Middendorp R, Knott A, Dürr M, Klinkenberg M, Pointurier F, Ferreira Sanchez D, Samson VA, Grolimund D, Niemeyer I, Bosbach D (2018) Microparticle production as reference materials for particle analysis methods in safeguards. MRS Adv 3:1005–1012. https://doi.org/10.1557/adv.2018.166

    Article  CAS  Google Scholar 

  23. Kegler P, Pointurier F, Rothe J, Dardenne K, Vitova T, Beck A, Hammerich S, Potts S, Faure AL, Klinkenberg M, Kreft K, Niemeyer I, Bosbach D, Neumeier S (2021) Chemical and structural investigations on uranium oxide–based microparticles as reference materials for analytical measurements. MRS Adv. https://doi.org/10.1557/s43580-021-00024-1

    Article  Google Scholar 

  24. Allen CG, Butler IS, Anh Tuan N (1987) Characterization of uranium oxides by micro-Raman spectroscopy. J Nucl Mater 144:17–19

    Article  CAS  Google Scholar 

  25. Palacios ML, Taylor SH (2000) Characterization of uranium oxides using in situ micro-Raman spectroscopy. Appl Spectrosc 54(9):1372–1377

    Article  CAS  Google Scholar 

  26. Jégou C, Carbello R, Peuget S, Roudil D, Desgranges L, Magnin M (2010) Raman spectroscopy characterization of actinide oxides (U1−yPuY)O23: resistance to oxidation by the laser beam and examination of defects. J Nucl Mater 405:235–243

    Article  Google Scholar 

  27. Tiwari P, Srivastava AK, Khattak BQ, Verma S, Upadhyay A, Sinha AK, Ganguli T, Lodha GS, Deb SK (2012) Effect of electron beam irradiation on PMMA films. Solid state physics. AIP Conf Proc 1447:587–588

    Article  CAS  Google Scholar 

  28. Wilhelm HA, McClusky JK (1969) Uranium metal by carbon reduction of oxide. J Metal 21:51–56

    CAS  Google Scholar 

  29. Guisard Restivo TA, Capocchi JDT (2004) Carbothermic reaction of uranium oxides into solvent metallic baths. J Nucl Mater 334:189–194

    Article  CAS  Google Scholar 

  30. Fridman A (2008) In: plasma chemistry, Chap. 7.2.2: 429–430. Cambridge University Press, UK. ISBN-13 978-0-521-84735-3

  31. Suzuki Y, Arai Y, Sasayama T, Watanabe H (1982) Kinetics on carbothermic reduction of UO2 + C powders and compacts to UC2. J Nucl Sci Technol 19:222–230

    Article  CAS  Google Scholar 

  32. Suzuki Y, Arai Y, Sasayama T, Handa M (1983) Mechanism of carbothermic reduction of (U,Pu)O2 to (U,Pu)C. J Nucl Sci Technol 20:874–876

    Article  CAS  Google Scholar 

  33. Mukerjee SK, Dehadraya JV, Vaidya VN, Sood DD (1990) Kinetic study of the carbothermic synthesis of uranium monocarbide microspheres. J Nucl Mater 172:37–46

    Article  CAS  Google Scholar 

  34. Mukerjee SK, Dehadraya JV, Vaidya VN, Sood DD (1994) Kinetics and mechanism of UO2 + C reaction for UC/UC2 preparation. J Nucl Mater 210:107–104

    Article  CAS  Google Scholar 

  35. Vidhya R, Antony MP, Vasudeva Rao PR (1997) Thermodynamic studies of uranium–gadolinium–carbon system through the carbothermic reduction of the oxides. J Nucl Mater 247:158–168

    Article  CAS  Google Scholar 

  36. Stewart RL (1934) Insulating films formed under electron and ion bombardment. Phys Rev 45:488–490

    Article  CAS  Google Scholar 

  37. Ennos AE (1953) The origin of specimen contamination in the electron microscope. Br J Appl Phys 4:101–108

    Article  Google Scholar 

Download references

Acknowledgements

To the memory of Maxim Penkin from the International Atomic Energy Agency (IAEA), who constantly gave warm support for this work and passed away too soon.

Author information

Authors and Affiliations

Authors

Contributions

FP: conceptualization, methodology, formal analysis, investigation, writing. OM: methodology. 

Corresponding author

Correspondence to Fabien Pointurier.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pointurier, F., Marie, O. An optimized methodology for the determination of the uranium chemical phases in micro-particles by Raman spectrometry within a scanning electron microscope. J Radioanal Nucl Chem 332, 2841–2850 (2023). https://doi.org/10.1007/s10967-022-08712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08712-4

Keywords

Navigation