Skip to main content
Log in

A method for determining 212Bi by TDCR Cherenkov counting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

212Bi is one of the potential medical alpha emitters for targeted alpha therapy, and development of a precise activity measurement method for 212Bi is necessary. In this work, a triple-to-double coincidence ratio (TDCR) Cherenkov method for the measurement of 212Bi activity was established. 224Ra source, calibrated by alpha spectrometry, was utilized for the method development. Cherenkov radiation emitted from the progenies of 224Ra was studied in details, demonstrating that 212Bi and its daughter 208Tl would dominate the production of Cherenkov photons while the contributions from 224Ra, 220Rn, 216Po, 212Pb and 212Po can be negligible. Potential counting loss of 212Pb and 212Bi owing to the emanation of 220Rn from the sample solution was also studied, and no obvious influence was obsevered. Thus, the TDCR Cherenkov quench curve was prepared using 224Ra as a 212Bi source. The performance of the method was examined using spiked samples with the 212Bi activities varied from 1.69 to 91.31 Bq, and the measured results agreed well with the expected values. The minimum detectable activity was determined to be 0.21 Bq.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dos Santos JC, Schafer M, Bauder-Wust U, Lehnert W, Leotta K, Morgenstern A, Kopka K, Haberkorn U, Mier W, Kratochwil C (2019) Development and dosimetry of (203)Pb/(212)Pb-labelled PSMA ligands: bringing “the lead” into PSMA-targeted alpha therapy? Eur J Nucl Med Mol Imaging 46:1081–1091. https://doi.org/10.1007/s00259-018-4220-z

    Article  CAS  Google Scholar 

  2. Tafreshi NK, Pandya DN, Tichacek CJ, Budzevich MM, Wang Z, Reff JN, Engelman RW, Boulware DC, Chiappori AA, Strosberg JR, Ji H, Wadas TJ, El-Haddad G, Morse DL (2021) Preclinical evaluation of [(225)Ac]Ac-DOTA-TATE for treatment of lung neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 48:3408–3421. https://doi.org/10.1007/s00259-021-05315-1

    Article  CAS  Google Scholar 

  3. Bloomer WD, McLaughlin WH, Neirinckx RD, Adelstein SJ, Gordon PR, Ruth TJ, Wolf AP (1981) Astatine-211—tellurium radiocolloid cures experimental malignant ascites. Science 212:340–341. https://doi.org/10.1126/science.7209534

    Article  CAS  Google Scholar 

  4. Sollini M, Marzo K, Chiti A, Kirienko M (2020) The five “W”s and “How” of Targeted Alpha Therapy: Why? Who? What? Where? When? and How? Rend Lincei Sci Fisiche e Nat 31:231–247. https://doi.org/10.1007/s12210-020-00900-2

    Article  Google Scholar 

  5. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS (2018) α-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J Nucl Med 59:878–884. https://doi.org/10.2967/jnumed.116.186338

    Article  CAS  Google Scholar 

  6. Brechbiel MW (2007) Targeted α-therapy: past, present, future? Dalton Trans. https://doi.org/10.1039/B704726F

    Article  Google Scholar 

  7. Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, Brill AB, Song H, Howell RW, Akabani G, Committee SM, Bolch WE, Brill AB, Fisher DR, Howell RW, Meredith RF, Sgouros G, Wessels BW, Zanzonico PB (2010) MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med Off Publ Soc Nucl Med 51:311–328. https://doi.org/10.2967/jnumed.108.058651

    Article  CAS  Google Scholar 

  8. Jurcic JG, Rosenblat TL (2014) Targeted alpha-particle immunotherapy for acute myeloid leukemia. American Society of Clinical Oncology Educational Book, pp e126–e131. https://doi.org/10.14694/EdBook_AM.2014.34.e126

  9. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A (2016) 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med Off Publ Soc Nucl Med 57:1941–1944. https://doi.org/10.2967/jnumed.116.178673

    Article  CAS  Google Scholar 

  10. Ferrier MG, Radchenko V, Wilbur DS (2019) Radiochemical aspects of alpha emitting radionuclides for medical application. Radiochim Acta 107:1065–1085. https://doi.org/10.1515/ract-2019-0005

    Article  CAS  Google Scholar 

  11. Kozak RW, Atcher RW, Gansow OA, Friedman AM, Hines JJ, Waldmann TA (1986) Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci U S A 83:474–478. https://doi.org/10.1073/pnas.83.2.474

    Article  CAS  Google Scholar 

  12. Kurtzman SH, Russo A, Mitchell JB, DeGraff W, Sindelar WF, Brechbiel MW, Gansow OA, Friedman AM, Hines JJ, Gamson J et al (1988) 212Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy. J Natl Cancer Inst 80:449–452. https://doi.org/10.1093/jnci/80.6.449

    Article  CAS  Google Scholar 

  13. Macklis RM, Kinsey BM, Kassis AI, Ferrara JL, Atcher RW, Hines JJ, Coleman CN, Adelstein SJ, Burakoff SJ (1988) Radioimmunotherapy with alpha-particle-emitting immunoconjugates. Science 240:1024–1026. https://doi.org/10.1126/science.2897133

    Article  CAS  Google Scholar 

  14. Simonson RB, Ultee ME, Hauler JA, Alvarez VL (1990) Radioimmunotherapy of Peritoneal Human Colon Cancer Xenografts with Site-specifically Modified 212Bi-labeled Antibody1. Cancer Res 50:985s–988s

    CAS  Google Scholar 

  15. Yong K, Brechbiel MW (2011) Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans 40:6068–6076. https://doi.org/10.1039/c0dt01387k

    Article  CAS  Google Scholar 

  16. Despotopulos JD, Kmak KN, Moody KJ, Shaughnessy DA (2018) Development of a 212Pb and 212Bi generator for homolog studies of flerovium and moscovium. J Radioanal Nucl Chem 317:473–477. https://doi.org/10.1007/s10967-018-5848-7

    Article  CAS  Google Scholar 

  17. Napoli E, Cessna JT, Fitzgerald R, Pibida L, Colle R, Laureano-Perez L, Zimmerman BE, Bergeron DE (2020) Primary standardization of (224)Ra activity by liquid scintillation counting. Appl Radiat Isot 155:108933. https://doi.org/10.1016/j.apradiso.2019.108933

    Article  CAS  Google Scholar 

  18. Mirzadeh S, Kumar K, Gansow OA (1993) The chemical fate of 212Bi-DOTA formed by β- decay of 212Pb(DOTA)2-***. Radiochim Acta 60:1–10. https://doi.org/10.1524/ract.1993.60.1.1

    Article  CAS  Google Scholar 

  19. Azure MT, Archer RD, Kandula SRS, Rao DV, Howell RW (1994) Biological effect of lead-212 localized in the nucleus of mammalian cells: role of recoil energy in the radiotoxicity of internal alpha-particle emitters. Radiat Res 140:276–283. https://doi.org/10.2307/3578912

    Article  CAS  Google Scholar 

  20. Čerenkov PA (1937) Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys Rev 52:378–379. https://doi.org/10.1103/PhysRev.52.378

    Article  Google Scholar 

  21. Bolotovskii BM (2009) Vavilov–Cherenkov radiation: its discovery and application. Phys Usp 52:1099–1110. https://doi.org/10.3367/UFNe.0179.200911c.1161

    Article  CAS  Google Scholar 

  22. Frank IM, Tamm IY (1937) Coherent visible radiation of fast electrons passing through matter. DokAN 14:109–114

    CAS  Google Scholar 

  23. Olfert JM, Dai X, Kramer-Tremblay S (2014) Rapid determination of Sr-90/Y-90 in water samples by liquid scintillation and Cherenkov counting. J Radioanal Nucl Chem 300:263–267. https://doi.org/10.1007/s10967-013-2913-0

    Article  CAS  Google Scholar 

  24. Tayeb M, Dai X, Corcoran EC, Kelly DG (2014) Evaluation of interferences on measurements of 90Sr/90Y by TDCR Cherenkov counting technique. J Radioanal Nucl Chem 300:409–414. https://doi.org/10.1007/s10967-013-2910-3

    Article  CAS  Google Scholar 

  25. Wang Y, Yang Y, Song L, Ma Y, Luo M, Dai X (2018) Effects of sodium salicylate on the determination of Lead-210/Bismuth-210 by Cerenkov counting. Appl Radiat Isot 139:175–180. https://doi.org/10.1016/j.apradiso.2018.05.013

    Article  CAS  Google Scholar 

  26. Kossert K (2010) Activity standardization by means of a new TDCR-Cerenkov counting technique. Appl Radiat Isot 68:1116–1120. https://doi.org/10.1016/j.apradiso.2009.12.038

    Article  CAS  Google Scholar 

  27. Yang Y, Ma Y, Wang Y, Dai X (2020) A rapid screening method for 32P in urine samples by TDCR Cerenkov measurement. J Radioanal Nucl Chem 326:369–377. https://doi.org/10.1007/s10967-020-07304-4

    Article  CAS  Google Scholar 

  28. Song L, Yang Y, Luo M, Ma Y, Dai X (2017) Rapid determination of radium-224/226 in seawater sample by alpha spectrometry. J Environ Radioact 171:169–175. https://doi.org/10.1016/j.jenvrad.2017.01.024

    Article  CAS  Google Scholar 

  29. Korkisch J (2013) Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry, vol VI. N Y. https://doi.org/10.1201/9781315140520

    Article  Google Scholar 

  30. Pressyanov DS (2002) Short solution of the radioactive decay chain equations. Am J Phys 70:444–445. https://doi.org/10.1119/1.1427084

    Article  CAS  Google Scholar 

  31. Ackerman NL, Graves EE (2012) The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides. Phys Med Biol 57:771–783. https://doi.org/10.1088/0031-9155/57/3/771

    Article  CAS  Google Scholar 

  32. Wood V, Ackerman NL (2016) Cherenkov light production from the alpha-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov Luminescence Imaging. Appl Radiat Isot 118:354–360. https://doi.org/10.1016/j.apradiso.2016.10.009

    Article  CAS  Google Scholar 

  33. Currie LA (2002) Limits for qualitative detection and quantitative determination. Appl Radiochem Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Institute for Radiation Protection (CIRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongxin Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Song, L., Ma, L. et al. A method for determining 212Bi by TDCR Cherenkov counting. J Radioanal Nucl Chem 332, 143–152 (2023). https://doi.org/10.1007/s10967-022-08700-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08700-8

Keywords

Navigation