Skip to main content
Log in

Novel method for efficient solidification the iodine contained waste by B2O3–Bi2O3 glass powder at very low temperature

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel pretreatment method was used to ameliorate the treatment effect of iodine contained radioactive waste. The pretreatment sample (15 w%) held the highest amorphous index (0.50) at 600 °C, and iodine element was in a state of uniform distribution. The density of the sample could increase to 2.95 gcm3 by using the novel method, which was higher than other similar studies. The leaching result of iodine was as low as 1.53 × 106 gm2d1 after 7 days treatment, which indicated that the solidified body has good stability in a long run.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chong S, Peterson JA, Riley BJ, Tabada D, Wall D, Corkhill CL, Mccloy JS (2018) Glass-bonded iodosodalite waste form for immobilization of 129I. J Nucl Mater 504:109–121

    Article  CAS  Google Scholar 

  2. Riley BJ, Vienna JD, Strachan DM, Mccloy JS, JerdenJr JL (2016) Materials and processes for the effective capture and immobilization of radioiodine: a review. J Nucl Mater 470:307–326

    Article  CAS  Google Scholar 

  3. Yuan WQ, Li BS, Wei GL, Lu XR, Zhang ZT, Chen XZ, Liu Y, Xie Y, Shu XY (2021) Immobilization of silver-coated silica gel with varying iodine loading in silicate glass ceramics. J Non-Cryst Solids 551:120433

    Article  CAS  Google Scholar 

  4. Liu Y, Wei GL, Feng YX, Lu XR, Chen Y, Sun RJ, Peng L, Ma MH, Zhang Y, Zhang ZT (2020) The effect of boron on zeolite-4A immobilization of iodine waste forms with a novel preparation method. J Radioanal Nucl Chem 324:579–587

    Article  CAS  Google Scholar 

  5. Yang JH, Shin JM, Park JJ, Park GI, Yim MS (2015) Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas. J Nucl Mater 457:1–8

    Article  CAS  Google Scholar 

  6. Soelberg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci Technol Nucl Ins 2013(1–12):287

    Google Scholar 

  7. Sheppard GP, Hriljac JA, Maddrell ER, Hyatt NC (2006) Silver zeolites: iodide occlusion and conversion to sodalite-a potential 129I waste form? Mater Res Soc Symp Proc 932(36):1

    Google Scholar 

  8. Yu F, Li DD, Cheng L, Yin Z, Zeng MH, Kurmoo M (2015) Porous supramolecular networks constructed of one-dimensional metal-organic chains: carbon dioxide and iodine capture. Inorg Chem 54(4):1655–1660

    Article  CAS  Google Scholar 

  9. Audubert F, Carpena J, Lacout JL, Tetard F (1997) Elaboration of an iodine-bearing apatite iodine diffusion into a Pb3 (VO4)2 matrix. Solid State Ionics 95(1–2):113–119

    Article  CAS  Google Scholar 

  10. Wei GL, Li BS, Zhang ZT, Chen SZ, Shu XY, Wang X, Liu Y, Xie Y, Shao DD, Lu XR (2019) Boron assisted low temperature immobilization of iodine adsorbed by silver-coated silica gel. J Nucl Mater 526:151758

    Article  CAS  Google Scholar 

  11. Zou H, Yi FC, Song MX, Wang XQ, Bian L, Li WM, Pan N, Jiang XQ (2018) Novel synthesis of Bi-Bi2O3-TiO2-C composite for capturing iodine-129 in off-gas. J Hazard Mater 365:81–87

    Article  Google Scholar 

  12. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv Appl Ceram 105(1):3–12

    Article  CAS  Google Scholar 

  13. Lemesle T, Méar FO, Campayo L, Pinet O, Revel B, Montagne L (2014) Immobilization of radioactive iodine in silver aluminophosphate glasses. J Hazard Mater 264(1):117–126

    Article  CAS  Google Scholar 

  14. Garino TJ, Nenoff TM, Krumhansl JL, Rademacher DX (2011) Low-temperature sintering Bi-Si-Zn-oxide glasses for use in either glass composite materials or core/shell 129I waste forms. J Am Ceram Soc 94:2412–2419

    Article  CAS  Google Scholar 

  15. Wang X, Chu TW (2018) Formation of AgI/Ag3PO4 solid solution on alumina for enhancing radioactive iodine adsorption at high temperatures. Nucl Sci Technol 29(005):39–49

    Google Scholar 

  16. Saito T, Tatsumisago M, Torata N, Minami T (1995) Stabilization process of α-AgI particles dispersed in glass matrices at room temperature. Solid State Ionics 79:279–283

    Article  CAS  Google Scholar 

  17. Wei GL, Luo F, Li BS, Liu Y, Yang JJ, Zhang ZT, Liu Y, Shu XY, Xie Y, Lu XR (2021) Immobilization of iodine waste forms: a low-sintering temperature with Bi2O3-B2O3-ZnO glass. Ann Nucl Energy 150:107817

    Article  CAS  Google Scholar 

  18. Vance ER, Agrawal DK (1982) X-ray studies of iodine sorption in some silver zeolites. J Nucl Mater 17(7):1889–1894

    Article  CAS  Google Scholar 

  19. Riley BJ, Schweiger MJ, Kim DS, Lukens WW, Williams BD, Iovin C, Rodriguez CP, Overman NR, Bowden ME, Dixon DR, Crum JV, McCloy JS, Kruger AA (2014) Iodine solubility in a low-activity waste borosilicate glass at 1000°C. J Nucl Mater 452(1–3):178–188

    Article  CAS  Google Scholar 

  20. Khafagy AH, El-Adawy AA, Higazy AA, Ei-rabaie S, Eid AS (2008) The glass transition temperature and infrared absorption spectra of: (70–x)TeO2+15B2O3+15P2O5+xLi2O glasses. J Non-Cryst Solids 354(1460–1466):337

    Google Scholar 

  21. Sayyed MI, Kaky KM, Gaikwad DK, Agar O, Gawai UP, Baki SO (2019) Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J Non-Cryst Solids 507:30–37

    Article  CAS  Google Scholar 

  22. Kindrat II, Padlyak BV, Drzewiecki A (2017) Intrinsic luminescence of un-doped borate glasses. J Lumi 187:546–554

    Article  CAS  Google Scholar 

  23. Baia L, Stefan R, Kiefer W, Popp J, Simon S (2002) Structural investigations of copper doped B2O3-Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids 303(3):379–386

    Article  CAS  Google Scholar 

  24. Sharma G, Rajendran V, Thind KS, Singh G, Singh A (2009) Structural investigation of bismuth borate glasses under the influence of γ-irradiation through ultrasonic studies. Phys B 404(20):3371–3378

    Article  CAS  Google Scholar 

  25. Oprea B, Radu T, Simon S (2013) XPS investigation of atomic environment changes on surface of B2O3-Bi2O3 glasses. J Non-Cryst Solids 379:35–39

    Article  CAS  Google Scholar 

  26. Pascuta P, Rada S, Borodi G, Bosca M, Culea E (2009) Influence of europium ions on structure and crystallization properties of bismuth-alumino-borate glasses and glass ceramics. J Mol Struct 924:214–220

    Article  Google Scholar 

  27. Wang X, Li BS, Chen Z, Shu XY, Zhang ZT, Yang JJ, Wei GL, Liu Y, Chen SZ, Xie Y, Lu XR (2021) The immobilization on various concentrations of iodine in silver-coated silica gel via B2O3-Bi2O3 based material. Mater Chem Phys 259:124040

    Article  CAS  Google Scholar 

  28. Gao GJ, Hu LL, Fan HY, Wang GN, Li KF, Feng SY, Fan SJ, Chen HY (2009) Effect of Bi2O3 on physical, optical and structural properties of boron silicon bismuthate glasses. Opt Mater 32(1):159–163

    Article  CAS  Google Scholar 

  29. Tang JJ, Ye ML, Mao Y, Lu SJ, Tang ZH (1987) Investigation of adsorption properties of the silver nitrate impregnated silica gels for radioiodine. Chin J Nucl Sci Eng 7(144–148):163

    Google Scholar 

  30. Liu Y, Li BS, Shu XY, Zhang ZT, Wei GL, Liu Y, Chen SZ, Xie Y, Lu XR (2020) Low-sintering-temperature borosilicate glass to immobilize silver-coated silica-gel with different iodine loadings. J Hazard Mater 403:123588

    Article  Google Scholar 

  31. Wei GL, Shu XY, Zhang ZT, Luo F, Liu Y, Li BS, Xie Y, Wang L, Lu XR (2021) Role of amorphous silica gel in B2O3-Bi2O3-ZnO-SiO2 to immobilize iodine waste. J Nucl Mater 543:152619

    Article  CAS  Google Scholar 

  32. Wei GL, Li BS, Yang JJ, Zhang ZT, Shu XY, Yuan WQ, Liu Y, Xie Y, Lu XR (2020) Immobilization of iodine waste in B2O3-Bi2O3-ZnO based materials: maximum solid solubility. J Radioanal Nucl Chem 326(2):1447–1456

    Article  CAS  Google Scholar 

  33. Sidek HAA, Rosmawati S, Talib ZA, Halimah MK, Daud WM (2009) Synthesis and optical properties of ZnO-TeO2 glass system. Am J Applied Sci 6(8):1489–1494

    Article  CAS  Google Scholar 

  34. Wei GL, Shu XY, Zhang ZT, Han WH, Luo F, Liu Y, Yang JJ, Li BS, Xie Y, Wang L, Lu XR (2020) Application of silica gel to immobilize iodine waste by low-temperature sintering. J Philos Mag Lett 3(1):1–6

    Google Scholar 

  35. Tang HX, Shu XY, Huang WX, Miao YL, Shi MH, Chen SZ, Li BS, Luo F, Xie Y, Shao DD, Lu XR (2021) Rapid solidification of Sr-contaminated soil by consecutive microwave sintering: mechanism and stability evaluation. J Hazard Mater 407:124761

    Article  CAS  Google Scholar 

  36. Connelly AJ, Hand RJ, Bingham PA, Hyatt NC (2011) Mechanical properties of nuclear waste glasses. J Nucl Mater 408(2):188–193

    Article  CAS  Google Scholar 

  37. Yang JH, Jin MS, Park JJ, Park GI (2014) Waste form of silver iodide (AgI) with low-temperature sintering glasses. Sep Sci Technol 49(2):298–304

    Article  CAS  Google Scholar 

  38. Lee CW, Pyo JY, Park HS, Yang JH, Heo J (2017) Immobilization and bonding scheme of radioactive iodine-129 in silver tellurite glass. J Nucl Mater 492:239–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (No. 20fksy10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirui Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Cheng, W., Liu, Y. et al. Novel method for efficient solidification the iodine contained waste by B2O3–Bi2O3 glass powder at very low temperature. J Radioanal Nucl Chem 329, 1467–1476 (2021). https://doi.org/10.1007/s10967-021-07876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07876-9

Keywords

Navigation