Skip to main content
Log in

[99mTc]Tc-Phosphate-buffer system as a potential tracer for bone imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, phosphate-buffered saline solution (PBS) was successfully radiolabeled with technetium-99m. The biodistribution profile and bone accumulation of the [99mTc]Tc-PBS system were evaluated in healthy swiss mice. The radiolabeling of the system was successfully obtained, yielding around 90 % of radiochemical purity. The system stability was tested in the presence of saline medium at 25 ºC and mouse plasma at 37 ºC, and results revealed that [99mTc]Tc-PBS showed excellent stability over time, in both media. It was observed a biphasic clearance profile, with fast elimination from the bloodstream by renal filtration. The radiolabeled system revealed a high specificity bone accumulation was observed, demonstrating an uptake behavior from 20 to 50 times higher than muscle, used as control. From all results obtained, the system constituted by [99mTc]Tc-PBS can be considered a potential selective agent for bone imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pfannkuchen N, Meckel M, Bergmann R et al (2017) Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone metastases. Pharmaceuticals 10:45. https://doi.org/10.3390/ph10020045

    Article  CAS  PubMed Central  Google Scholar 

  2. Kozloff KM, Weissleder R, Mahmood U (2007) Noninvasive optical detection of bone mineral. J Bone Miner Res 22:1208–1216. https://doi.org/10.1359/jbmr.070504

    Article  CAS  PubMed  Google Scholar 

  3. Ogawa K (2019) Development of diagnostic and therapeutic probes with controlled pharmacokinetics for use in radiotheranostics. Chem Pharm Bull 67:897–903. https://doi.org/10.1248/cpb.c19-00274

    Article  CAS  Google Scholar 

  4. Van den Wyngaert T, Strobel K, Kampen WU et al (2016) The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imag 43:1723–1738. https://doi.org/10.1007/s00259-016-3415-4

    Article  Google Scholar 

  5. Cook GJR (2020) Imaging with radiolabelled bisphosphonates. Bone 137:115372. https://doi.org/10.1016/j.bone.2020.115372

    Article  CAS  PubMed  Google Scholar 

  6. Davis MA, Jones AG (1976) Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31. https://doi.org/10.1016/S0001-2998(76)80033-5

    Article  CAS  PubMed  Google Scholar 

  7. Schümichen C, Körfgen T, Hoffmann T (1980) Relationship between complex stability and biokinetics of 99mTc-phosphate compounds. Nuklearmedizin 19:7–10

    Article  Google Scholar 

  8. Francis MD, Fogelman I (1987) 99mTc diphosphonate uptake mechanism on bone. Bone Scan Clin Practice. Springer London, London, pp 7–17

    Chapter  Google Scholar 

  9. Zhong ZA, Peck A, Li S et al (2015) 99mTC-Methylene diphosphonate uptake at injury site correlates with osteoblast differentiation and mineralization during bone healing in mice. Bone Res 3:15013. https://doi.org/10.1038/boneres.2015.13

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yuda H, Wakao H (1996) 99mTc-MDP accumulation mechanisms in bone: basic study on the adsorption onto hydroxyapatite. Oral Radiol 12:27–32. https://doi.org/10.1007/BF02351579

    Article  Google Scholar 

  11. Kanishi D (1993) 99mTc-MDP accumulation mechanisms in bone. Oral Surgery. Oral Med Oral Pathol 75:239–246. https://doi.org/10.1016/0030-4220(93)90100-I

    Article  CAS  Google Scholar 

  12. Nakai F, Ohbayashi Y, Nakai Y et al (2020) Bone metabolism of the jaw in response to bisphosphonate: a quantitative analysis of bone scintigraphy images. Odontology 108:653–660. https://doi.org/10.1007/s10266-020-00503-1

    Article  CAS  PubMed  Google Scholar 

  13. Salvarese N, Spolaore B, Marangoni S et al (2018) Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis(thiosemicarbazone) bifunctional chelator. J Inorg Biochem 183:18–31. https://doi.org/10.1016/j.jinorgbio.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  14. Ramos-Membrive R, Erhard Á, Luis de Redín I et al (2020) In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. J Drug Deliv Sci Technol 101809. https://doi.org/10.1016/j.jddst.2020.101809

  15. Fernandes RS, Silva JO, Monteiro LOF et al (2016) Doxorubicin-loaded nanocarriers: a comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed Pharmacother 84:252–257. https://doi.org/10.1016/J.BIOPHA.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  16. Saha GB (1992) Quality control of radiopharmaceuticals. Fundament Nuclear Pharm. Springer New York, New York, pp 143–167

    Chapter  Google Scholar 

  17. Oda CMR, Fernandes RS, Lopes SCA et al (2017) Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomed Pharmacother 89:268–275. https://doi.org/10.1016/j.biopha.2017.01.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pritchard JB, Bend JR (1984) Mechanisms controlling the renal excretion of xenobiotics in fish: effects of chemical structure. Drug Metab Rev 15:655–671. https://doi.org/10.3109/03602538409041075

    Article  CAS  PubMed  Google Scholar 

  19. Zuckier LS, Martineau P (2015) Altered biodistribution of radiopharmaceuticals used in bone scintigraphy. Semin Nucl Med 45:81–96. https://doi.org/10.1053/j.semnuclmed.2014.07.007

    Article  PubMed  Google Scholar 

  20. Palma E, Correia JDG, Oliveira BL et al (2011) 99mTc(CO)3-labeled pamidronate and alendronate for bone imaging. Dalt Trans 40:2787. https://doi.org/10.1039/c0dt01396j

    Article  CAS  Google Scholar 

  21. Yanagi M, Uehara T, Uchida Y et al (2013) Chemical design of 99m Tc-labeled probes for targeting osteogenic bone region. Bioconjug Chem 24:1248–1255. https://doi.org/10.1021/bc400197f

    Article  CAS  PubMed  Google Scholar 

  22. Norman Adler A, Lazaro Gamin L (1974) Bone seeking technetium 99 M stannous phosphate complex. 8

  23. Steigman J, Eckelman WC (1992) The chemistry of technetium in medicine

  24. Meena AH, Arai Y (2017) Environmental geochemistry of technetium. Environ Chem Lett 15:241–263. https://doi.org/10.1007/s10311-017-0605-7

    Article  CAS  Google Scholar 

  25. Huang S-Y, Qian M, Pierre VC (2019) A combination of factors: tuning the affinity of Europium receptors for phosphate in water. Inorg Chem 58:16087–16099. https://doi.org/10.1021/acs.inorgchem.9b02650

    Article  CAS  PubMed  Google Scholar 

  26. Ziessman HA, O’Malley JP, Thrall JH, Fahey FH (2013) Nuclear medicine: the requisites. Elsevier Inc

  27. Song X, Wang Y, Zhang J et al (2018) Synthesis and evaluation of a novel 99m Tc nitrido radiopharmaceutical with alendronate dithiocarbamate as a potential bone-imaging agent. Chem Biol Drug Des 91:545–551. https://doi.org/10.1111/cbdd.13117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG-Brazil), Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq-Brazil), and Comissão Nacional de Energia Nuclear (CNEN-Brazil) for their financial support and scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Crístian Ferreira Soares or André Luis Branco de Barros.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, N.C., de Oliveira Silva, J., De Sousa, F.B. et al. [99mTc]Tc-Phosphate-buffer system as a potential tracer for bone imaging. J Radioanal Nucl Chem 329, 1119–1124 (2021). https://doi.org/10.1007/s10967-021-07869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07869-8

Keywords

Navigation