Skip to main content
Log in

Measurement and covariance analysis of 100 Mo (n, 2n) 99 Mo and 96 Mo (n, p) 96 Nb reaction cross sections at the incident neutron energy of 14.54 MeV

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 100Mo (n, 2n) 99Mo and 96Mo (n,p) 96Nb reactions have been studied relative to the 197Au (n, 2n) 196Au monitor reaction, at the neutron energy of 14.54 MeV, based on an experiment performed using Purnima neutron generator. Extended unscented transformation technique has been applied for computing the contribution of uncertainty of each attribute, which is then propagated, for the measurement and covariance analysis of the cross section of 100Mo (n, 2n) 99Mo and 96Mo (n, p) 96Nb reactions. The results obtained agree closely with the experimental data, model data and data in various evaluated nuclear data libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Filby RH, Lessmann JJ, Buckley PT, Dugan DL, Elliston JT, Paulenova A (2006) Radioisotopes in medicine: preparing a technetium-99m generator and determining its efficiency. J Chem Educ 83(4):625

    Article  Google Scholar 

  2. Kumar A, Srivenkatesan R, Sinha RK (2009) On the physics design of advanced heavy water reactor (AHWR). In: International conference on opportunities and challengers for water cooled reactors in the 21st century. International Atomic Energy Agency (IAEA-CN-164), pp 84–85

  3. IAEA-EXFOR Database. http://www-nds.iaea.org/exfor. Accessed 11 Dec 2019

  4. Sinha A, Roy T, Kashyap Y (2015) Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India. Nucl Instrum Methods Phys Res B350:66–70

    Article  Google Scholar 

  5. Ram SP, Nair J, Suryanaraya SV, Danu LS, Ganesan S (2020) Error propagation using extended unscented transformation technique in micro-correlation method for covariance analysis of efficiency of a HPGe detector. Nucl Instrum Methods Phys Res Sect A 953:163057

    Article  CAS  Google Scholar 

  6. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422

    Article  Google Scholar 

  7. Harshavardhan Kadvekar S, Khan SP, Ram J, Nair S, Ganesan (2016) A preliminary examination of the application of unscented transformation technique to error propagation in nonlinear cases of nuclear data science. Nucl Sci Eng 183:356–370

    Google Scholar 

  8. NuDat 2.7 (2016) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2. Accessed Nov 2019

  9. Vidmar T (2005) EFFTRAN—a Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 550:603–608

    Article  CAS  Google Scholar 

  10. Mathura JS (2018) Uncertainty propagation in neutron activation cross-section measurement using unscented transformation method. Nucl Sci Eng. https://doi.org/10.1080/00295639.2018.1538280

    Article  Google Scholar 

  11. Patel T, Sinha A (2013) Development of low energy deuteron accelerator-based DC and pulsed neutron generators. BARC newsletter, p 146

  12. Agostinelli S (2003) GEANT4: a simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303

    Article  CAS  Google Scholar 

  13. Pasha I, Basavanna R, Yerranguntla SS, Suryanarayana SV, Naik M, Karkera M, Eswaran R, Gurusamy P, Madegowda SA, Basavalingappa SH (2019) Measurement of 67Zn (n, p) 67Cu, 64Zn (n, 2n) 63Zn, 89Y (n, γ) 90mY and 89Y (n, 2n) 88Y reaction cross sections at the neutron energy of 14.54 MeV with covariance analysis. J Radio Anal Nucl Chem. https://doi.org/10.1007/s10967-019-06883-1

    Article  Google Scholar 

  14. Nowotny R (1998) XMuDat: photon attenuation data on PC, IAEA Report IAEA-NDS 195. http://www-nds.iaea.org/publications/iaea-nds. Accessed Nov 2019

  15. Ram SP, Nair J, Ganesan S (2017) A stochastic convergence analysis of random number generators as applied to error propagation using Monte Carlo method and unscented transformation technique. In: IEEE international conference on signal processing, informatics communication and energy system. ISBN No. 978-1-5386-3864-4$4

  16. Geraldo LP, Smith DL (1990) Covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Nucl Instrum Methods Phys Res A 290:499–508

    Article  Google Scholar 

  17. Santhi Y, Naik H, Karantha M, Ganesan S, Saraswatula SV, Nair SNP (2018) Measurement and covariance analysis of 59Co (n, 2n)58Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV.  Radiochim Acta Int J Chem Asp Nucl Sci Technol 106(11):877–884

    Google Scholar 

  18. Shivashankar BS, Ganesan S, Naik H, Suryanarayana SV, Nair NS, Prasad KM (2015) Measurement and covariance analysis of reaction cross sections for 58Ni (n, p) 58Co relative to cross section for formation of 97Zr fission product in neutron-induced fission of 232Th and 238U at effective neutron energies En = 5.89, 10.11, and 15.87 MeV. Nucl Sci Eng 179(4):423–433

    Article  Google Scholar 

  19. Karkera M, Naik H, Punchithaya S, Prasad M, Yerraguntla SS, Suryanarayana SV, Ganesan S, Vansola V (2018) Measurement and covariance analysis of 232Th(n,2n)231Th reaction cross sections at the effective neutron energies of 8.97 and 16.52 MeV. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6199-0

    Article  Google Scholar 

  20. Chadwick M, Oblozinsky B, Herman P (2006) ENDF/B-VIII. 0: next generation evaluated nuclear data library for nuclear science and technology. Nucl Data Sheets 107(12):2931–3060

    Article  CAS  Google Scholar 

  21. An International collaboration of NEA data bank participating countries (2017) The joint evaluated fission and fusion file (JEFF). http://www.oecd-nea.org. Accessed Jan 2020

  22. Shibata K, Iwamoto N, Kunieda S, Minato F, Iwamoto O (2016) Activation cross-section file for decommissioning of LWRs. In: JAEA, pp 47–52

  23. Youxiang Z (2002) CENDL-3—Chinese evaluated nuclear data library, version 3. J Nucl Sci Technology 39:37–39

    Article  Google Scholar 

  24. Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841–2934

    Article  CAS  Google Scholar 

  25. Koning AJ, Hilaire S, Goriely S (2015) TALYS-1.8, a nuclear reaction program (NRG-1755 ZG Petten, The Netherlands). http://www.talys.eu/download-talys. Accessed 14 Jan 2020

  26. Grallert A, Csikai J, Buczko CM, Shaddad I (1993) Investigations on the systematics in (n.a) cross sections at 14.6 MeV. IAEA Nuclear Data Section report to the I.N.D.C., Austria, vol 286, p 131

  27. Xiangzhong K, Yongchang W, Junqian Y, Xuezhi W, Jingkang Y, Jing W (1991) The cross section measurements for the 100Mo (n,2n) 99Mo, 96Mo (n, p) 96Nb and 92Mo (n, a) 89m+g Zr reaction. J High Energy Phys Nucl Phys Chin Ed China 15:549

    Google Scholar 

  28. Parashari S, Mukherjee S, Suryanarayana SV, Nayak BK, Makwana R, Singh NL, Naik H (2019) Systematic analysis of the neutron-induced reaction cross sections for natMo isotopes within 10–20 MeV. Phys Rev C. https://doi.org/10.1103/physrevc.99.044602

    Article  Google Scholar 

  29. Ikeda Y, Konno C, Oishi K, Nakamura T, Miyade H, Kawade K, Yamamoto H, Katoh T (1988) Activation cross section measurements for fusion reactor structural materials at neutron energy from 13.3 to 15.0 MeV using FNS facility. JAERI Reports, No. 1312

  30. Semkova V, Nolta R (2014) Measurement of neutron activation cross sections on Mo isotopes in the energy range from 7 MeV to 15 MeV. In: Journal EPJ web of conferences, France, vol 66, p 03077

  31. Zhou Muyao Z, Yongfa W, Chuanshan Z, Lu C, Yitai Z, Shuxin Z, Shenjun X, Kuanzhong Z, Shenmuo C, Xueshi Z, Yiping Y (1987) Shell effect from the cross section of the (n,2n) reaction produced by 14.6 MeV neutron. Chin J Nucl Phys 9:34

    Google Scholar 

  32. Paul EB, Clarke RL (1953) Cross-section measurements of reactions induced by neutrons of 14.5 MeV energy. Can J Phys 31(2):267–277

    Article  CAS  Google Scholar 

  33. Marcinkowski A, Stankiewisz K, Garuska U (1986) Cross sections of fast neutron induced reactions on molybdenum isotopes.  Z fuer Phys A Hadrons Nucl 323:91

    CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to express her thanks to the entire members of staff of Purnima neutron facility at BARC, for providing the requisite permission and support in performing the nuclear experiment, during April 2019 and also thankful to Mr. Imran Pasha of Bangalore University, for providing the sample molybdenum and monitor gold for the experimental study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Prasanna Ram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, S.P., Nair, J., Suryanarayana, S.V. et al. Measurement and covariance analysis of 100 Mo (n, 2n) 99 Mo and 96 Mo (n, p) 96 Nb reaction cross sections at the incident neutron energy of 14.54 MeV . J Radioanal Nucl Chem 325, 831–840 (2020). https://doi.org/10.1007/s10967-020-07213-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07213-6

Keywords

Navigation