Skip to main content
Log in

Fluorimetric estimation of uranium at ultra trace level in reactor grade sodium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple method has been developed for the estimation of uranium in reactor grade sodium without the removal of sodium using time gated luminescence with pulsed lamp. Samples are prepared after oxidizing the sodium in air followed by dissolution in H2SO4. Luminescence of uranium is measured in 2 M H3PO4 + 1 M H2SO4 medium. Using this method, the concentration of uranium in synthetic sodium sample was determined to be 0.2 µg/g. The limit of detection of uranium in bulk sodium was found to be 0.016 µg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kakodkar A (2014) Evolution of nuclear reactor containments in India: addressing the present day challenges. Nucl Eng Des 269:3–22

    Article  CAS  Google Scholar 

  2. Puthiyavinayagam P, Selvaraj P, Balasubramaniyan V, Raghupathy S, Velusamy K, Devan K, Nashine BK, Kumar GP, Kumar KVS, Varatharajan S, Mohanakrishnan P, Srinivasan G, Bhaduri AK (2017) Development of fast breeder reactor technology in India. Prog Nucl Energy 101:19–42

    Article  CAS  Google Scholar 

  3. Raj B, Kamath HS, Natarajan R, Rao PRV (2005) A perspective on fast reactor fuel cycle in India. Prog Nucl Energy 47:369–379

    Article  CAS  Google Scholar 

  4. Setty DS, Kapoor K, Saibaba N (2017) Nuclear fuel cycle—developments and challenges in fuel fabrication technology in India. Prog Nucl Energy 101:100–117

    Article  CAS  Google Scholar 

  5. Carre F (2011) Research and technology breakthroughs in nuclear power for shaping a sustainable low-carbon energy future. Energy Procedia 7:60–63

    Article  Google Scholar 

  6. Subramanian V, Kumar A, Pujala U, Sujatha PN, Srinivas CV, Bagavathsingh A, Goplakrishnan V, Ananthanarayanan R, Kumar AA, Kumar SK, Chandramouli S, Baskaran R, Nashine BK, Venkatraman B (2019) Studies on sodium aerosols dispersion in open environment for fast reactor safety. Ann Nucl Energy 125:63–73

    Article  CAS  Google Scholar 

  7. Kim HW, Joo YS, Park SJ, Kim SK (2019) Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor. Nucl Eng Technol. https://doi.org/10.1016/j.net.2019.09.013

    Article  Google Scholar 

  8. Kumar A, Subramanian V, Baskaran R, Krishnakumar S, Chandramouli S, Venkatraman B (2014) Development and validation of a methodology for characterization of sodium aerosols in cover gas region. Aerosol Air Qual Res 14:1534–1541

    Article  Google Scholar 

  9. Mathews CK (1982) Trace analysis in the sodium coolant of fast breeder reactors. Pure Appl Chem 54:807–818

    Article  CAS  Google Scholar 

  10. Vanderhaegen M, Belguet AL (2014) A review on sodium boiling phenomena in reactor systems. Nucl Sci Eng 176:115–137

    Article  CAS  Google Scholar 

  11. Douglas TB (1954) A cryoscopic study of the solubility of uranium in liquid sodium at 97.8 °C. J Res NBS 52:223–226

    CAS  Google Scholar 

  12. Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125

    Article  CAS  Google Scholar 

  13. Rozmaric M, Ivsic AG, Grahek Z (2009) Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection. Talanta 80:352–362

    Article  CAS  Google Scholar 

  14. Krishnakumar M, Chakrapani G, Satyanarayana K, Mukkanti K (2016) Selective matrix removal and ICP-OES determination of trace uranium, rare earth elements and yttrium in zircon minerals. J Radioanal Nucl Chem 307:497–505

    Article  CAS  Google Scholar 

  15. Silvermann L (1971) The Determination of impurities in nuclear grade sodium metal. Pergamon Press, Oxford

    Google Scholar 

  16. Rathore DPS, Kumar M (2004) Analytical applications of a differential technique in laser-induced fluorimetry: accurate and precise determination of uranium in concentrates and for designing microchemielectronic devices for on-line determination in processing industries. Talanta 62:343–349

    Article  CAS  Google Scholar 

  17. Rathore DPS, Tarafder PK, Kayal M, Kumar M (2001) Application of a differential technique in laser-induced fluorimetry: simple and a precise method for the direct determination of uranium in mineralised rocks at the percentage level. Anal Chim Acta 434:201–208

    Article  CAS  Google Scholar 

  18. Premadas A, Saravanakumar G (2005) Fluorimetric determination of uranium in certain refractory minerals, environmental samples and industrial waste materials. J Radioanal Nucl Chem 266:95–100

    Article  CAS  Google Scholar 

  19. Kochan IG, Shuktomova II (1994) Separation of uranium from soils for its determination. J Radioanal Nucl Chem 188:27–32

    Article  CAS  Google Scholar 

  20. Jung EC, Cho HR, Cha W, Park JH, Baik MH (2014) Uranium determination in ground water using laser spectroscopy. Rev Anal Chem 33:245–254

    Article  CAS  Google Scholar 

  21. Davarani SSH, Moazami HR, Keshtkar AR, Banitaba MH, Nojavan S (2013) A selective electromembrane extraction of uranium(VI) prior to its fluorometric determination in water. Anal Chim Acta 783:74–79

    Article  CAS  Google Scholar 

  22. Baik MH, Jung EC, Jeong J (2015) Determination of uranium concentration and speciation in natural granitic ground water using TRLFS. J Radioanal Nucl Chem 305:589–598

    Article  CAS  Google Scholar 

  23. Moriyasu M, Yokoyama Y, Ikeda S (1977) Quenching mechanism of uranyl luminescence by metal ions. J Inorg Nucl Chem 39:2205–2209

    Article  CAS  Google Scholar 

  24. Brina R, Miller AG (1992) Direct detection of trace levels of uranium by laser-induced kinetic phosphorimetry. Anal Chem 64:1413–1418

    Article  CAS  Google Scholar 

  25. Maji S, Kumar S, Sundararajan K, Sankaran K (2018) A novel luminescence method for the estimation of uranyl ions using trimesic acid-cadmium complex. Microchem J 140:207–213

    Article  CAS  Google Scholar 

  26. Maji S, Kumar S, Sankaran K (2014) Fluorimetric estimation of U(VI) in the presence of a large excess of Th(IV). J Radioanal Nucl Chem 302:1277–1281

    Article  CAS  Google Scholar 

  27. Kumar SA, Shenoy NS, Pandey S, Sounderajan S, Venkateswaran G (2008) Direct determination of uranium in seawater by laser fluorimetry. Talanta 77:422–426

    Article  CAS  Google Scholar 

  28. Moulin C, Decambox P, Trecani L (1996) Direct and fast uranium determination in zirconium by time-resolved laser-induced fluorescence spectrometry. Anal Chim Acta 321:121–126

    Article  CAS  Google Scholar 

  29. Beltrami D, Florence MB, Cote G, Mokhtari H, Courtaud B, Simoni E, Chagnes A (2014) Investigation of the speciation of uranium(VI) in concentrated phosphoric acid and in synergistic extraction systems by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J Mol Liq 190:42–49

    Article  CAS  Google Scholar 

  30. Boulyga SF, Cunningham JA, Macsik Z, Hiess J, Penkin MV, Walsh SJ (2017) Development, validation and verification of an ICP-MS procedure for a multi-element analysis of uranium ore concentrates. J Anal At Spectrom 32:2226–2237

    Article  CAS  Google Scholar 

  31. Tuovinen H, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehto J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180

    Article  CAS  Google Scholar 

  32. Barretta CA, Chouyyoka W, Speakmanb RJ, Olsena KB, Addlemana RS (2017) Rapid extraction and assay of uranium from environmental surface samples. Talanta 173:69–78

    Article  Google Scholar 

  33. Murty BN, Yadav RB, Ramamurthy CK, Syamsundar S (1991) Spectrophotometric determination of the oxygen to uranium ratio in uranium oxides based on dissolution in sulphuric acid. Talanta 38:1335–1340

    Article  CAS  Google Scholar 

  34. Tongzai Y, Pifeng X, Shiyou Y, Kaiming L, Zhonghua F, Yuhui H, Tao J (2008) Determination of solubility of uranium in liquid sodium. Nucl Sci Technol 19:93–98

    Article  Google Scholar 

  35. Moulin C, Decambox P, Mauchien P (1996) Direct uranium(VI) and nitrate determinations in nuclear reprocessing by time-resolved laser-induced fluorescence. Anal Chem 68:3204–3209

    Article  CAS  Google Scholar 

  36. Chen X, Mei Q, Yu L, Ge H, Yue J, Zhang K, Hayat T, Alsaedi A, Wang S (2018) Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl Mater Interfaces 10:42225–42232

    Article  CAS  Google Scholar 

  37. Huang S, Jiang S, Pang H, Wen T, Asiri MA, Alamry AK, Alsaedi A, Wang X, Wang S (2019) Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal. Chem Eng J 368:941–950

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Maji or K. Sundararajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Maji, S., Venkatesh, M. et al. Fluorimetric estimation of uranium at ultra trace level in reactor grade sodium. J Radioanal Nucl Chem 325, 191–198 (2020). https://doi.org/10.1007/s10967-020-07206-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07206-5

Keywords

Navigation