Skip to main content
Log in

Determining P, S, Br, and I content in uranium by triple quadrupole inductively coupled plasma mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The trace impurities of a uranium ore concentrate (UOC) can be examined to determine mine source, methods of production, and quality. This study presents a method to determine the concentration of halides and main group elements, specifically P, S, Br and I, utilizing triple quadrupole inductively coupled plasma–mass spectrometry. These analytes were measured in a uranium matrix to simulate a UOC sample. The concentrations determined with this method showed agreement with known values. Solutions with and without uranium were compared. A UOC certified reference material, CUP-2, was analyzed to further demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

    Article  CAS  Google Scholar 

  2. Mayer K, Wallenius M, Varga Z (2015) Sample characteristics and nuclear forensic signatures. In: Fedchenko V (ed) The new nuclear forensicsanalysis of nuclear materials for security purposes. Oxford University Press, Oxford, pp 93–127

    Google Scholar 

  3. Keegan E, Richter S, Kelly I, Wong H, Gadd P, Kuehn H, Alonso-Munoz A (2008) The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl Geochem 23(4):765–777

    Article  CAS  Google Scholar 

  4. Moody KJ, Grant PM, Hutcheon ID (2015) Nuclear forensic analysis, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  5. Badaut V, Wallenius M, Mayer K (2009) Anion analysis in uranium ore concentrates by ion chromatography. J Radioanal Nucl Chem 280(1):57–61

    Article  CAS  Google Scholar 

  6. Lin M, Zhao YG, Zhao LF, Li LL, Wang F, Zhu LC, Hu XN, Ning W (2015) Tracing origins of uranium ore concentrates (UOCs) by multidimensional statistical analysis of rare-earth impurities. J Anal At Spectrom 30(2):396–402

    Article  CAS  Google Scholar 

  7. Svedkauskaite-LeGore J, Rasmussen G, Abousahl S, van Belle P (2008) Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J Radioanal Nucl Chem 278(1):201–209

    Article  CAS  Google Scholar 

  8. Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G (2012) Attribution of uranium ore concentrates using elemental and anionic data. Appl Geochem 27(8):1600–1609

    Article  CAS  Google Scholar 

  9. Significance of Mineralogy in the Developments of Flowsheets flow sheets for Processing Uranium Ores (1980) Technical Reports Series NO. 196. International Atomic Energy Agency, Vienna

  10. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassata WS, Hutcheon ID (2016) Nuclear forensic science: analysis of nuclear material out of regulatory control. In: Jeanloz R, Freeman KH (eds) Annual review of earth and planetary sciences, vol 44. Annual Reviews, Palo Alto, pp 555–579. https://doi.org/10.1146/annurev-earth-060115-012309

  11. Su YF, Tonkyn RG, Sweet LE, Corbey JF, Bryan SA, Johnson TJ (2018) Characterization of uranium ore concentrate chemical composition via Raman spectroscopy. In: 19th meeting of the chemical, biological, radiological, nuclear, and explosives (CBRNE) Sensing as part of the SPIE defense and commercial sensing (DCS) symposium, Orlando, FL, Apr 16-18 2018. Proceedings of SPIE. Spie-Int Soc Optical Engineering, BELLINGHAM. https://doi.org/10.1117/12.2304304

  12. Pointurier F, Marie O (2013) Use of micro-Raman spectrometry coupled with scanning electron microscopy to determine the chemical form of uranium compounds in micrometer-size particles. J Raman Spectrosc 44(12):1753–1759

    Article  CAS  Google Scholar 

  13. Lin DHM, Manara D, Varga Z, Berlizov A, Fanghanel T, Mayer K (2013) Applicability of Raman spectroscopy as a tool in nuclear forensics for analysis of uranium ore concentrates. Radiochim Acta 101(12):779–784

    Article  CAS  Google Scholar 

  14. Varga Z, Ozturk B, Meppen M, Mayer K, Wallenius M, Apostolidis C (2011) Characterization and classification of uranium ore concentrates (yellow cakes) using infrared spectrometry. Radiochim Acta 99(12):807–813

    Article  CAS  Google Scholar 

  15. Burger S, Boulyga SF, Penkin MV, Bostick D, Jovanovic S, Lindvall R, Rasmussen G, Riciputi L (2014) Quantifying multiple trace elements in uranium ore concentrates: an interlaboratory comparison. J Radioanal Nucl Chem 301(3):711–729

    Article  Google Scholar 

  16. Rogers KT, Giaquinto J, Essex RM, Metzger SC, Ticknor BW, Hexel CR (2018) Trace impurity analysis in uranium oxide via hybrid quantification techniques-gravimetric standard addition and isotope dilution mass spectrometry. J Radioanal Nucl Chem 318(1):685–694

    Article  CAS  Google Scholar 

  17. Manard BT, Metzger SC, Quarles CD, Rogers KT, Ticknor BW, Bostick DA, McBay EH, Hexel CR (2019) Evaluation and specifications for in-line uranium separations using inductively coupled plasma optical emission spectroscopy (ICP-OES) detection for trace elemental analysis. Appl Spectrosc 73(8):927–935

    Article  CAS  Google Scholar 

  18. Wylie EM, Manard BT, Quarles CD, Meyers LA, Xu N (2018) An automated micro-separation system for the chromatographic removal of uranium matrix for trace element analysis by ICP-OES. Talanta 189:24–30

    Article  CAS  Google Scholar 

  19. Khumalo N, Mathuthu M (2018) Determination of trace elements and lanthanide (REE) signatures in uranium mine products in South Africa by means of inductively coupled plasma mass spectrometry. J Geochem Explor 186:235–242

    Article  CAS  Google Scholar 

  20. Boulyga SF, Cunningham JA, Macsik Z, Hiess J, Penkin MV, Walsh SJ (2017) Development, validation and verification of an ICP-MS procedure for a multi-element analysis of uranium ore concentrates. J Anal At Spectrom 32(11):2226–2237

    Article  CAS  Google Scholar 

  21. Varga Z, Katona R, Stefanka Z, Wallenius M, Mayer K, Nicholl A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80(5):1744–1749

    Article  CAS  Google Scholar 

  22. Balcone-Boissard H, Michel A, Villemant B (2009) Simultaneous determination of fluorine, chlorine, bromine and iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 33(4):477–485

    Article  CAS  Google Scholar 

  23. Jeyakumar S, Mishra VG, Das MK, Raut VV, Sawant RM, Ramakumar KL (2014) Study on the identification of organic and common anions in the pyrohydrolysis distillate of mixed uranium-plutonium carbide for the interference free determination of chlorine and fluorine by ion chromatography. Radiochim Acta 102(4):291–302

    Article  CAS  Google Scholar 

  24. Shimizu K, Suzuki K, Saitoh M, Konno U, Kawagucci S, Ueno Y (2015) Simultaneous determinations of fluorine, chlorine, and sulfur in rock samples by ion chromatography combined with pyrohydrolysis. Geochem J 49(1):113–124

    Article  CAS  Google Scholar 

  25. Chai JY, Muramatsu Y (2007) Determination of bromine and iodine in twenty-three geochemical reference materials by ICP-MS. Geostand Geoanal Res 31(2):143–150

    Article  CAS  Google Scholar 

  26. Oliveira AA, Trevizan LC, Nobrega JA (2010) REVIEW: iodine determination by inductively coupled plasma spectrometry. Appl Spectrosc Rev 45(6):447–473

    Article  CAS  Google Scholar 

  27. Thomas R (2013) Practical guide to ICP-MS a tutorial for beginners, 3rd edn. CRC Press Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  28. Tanner SD, Baranov VI, Bandura DR (2002) Reaction cells and collision cells for ICP-MS: a tutorial review. Spectroc Acta Pt B-Atom Spectr 57(9):1361–1452

    Article  Google Scholar 

  29. Balcaen L, Bolea-Fernandez E, Resano M, Vanhaecke F (2015) Inductively coupled plasma–Tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra) trace elements—a tutorial review. Anal Chim Acta 894:7–19

    Article  CAS  Google Scholar 

  30. Haldimann M, Eastgate A, Zimmerli B (2000) Improved measurement of iodine in food samples using inductively coupled plasma isotope dilution mass spectrometry. Analyst 125(11):1977–1982

    Article  CAS  Google Scholar 

  31. Todorov TI, Gray PJ (2016) Analysis of iodine in food samples by inductively coupled plasma-mass spectrometry. Food Addit Contam Part A-Chem 33(2):282–290

    CAS  Google Scholar 

  32. Schnetger B, Muramatsu Y, Yoshida S (1998) Iodine (and other halogens) in twenty six geological reference materials by ICP-MS and ion chromatography. Geostand Newsl 22(2):181–186

    Article  CAS  Google Scholar 

  33. Fecher PA, Goldmann I, Nagengast A (1998) Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J Anal At Spectrom 13(9):977–982

    Article  CAS  Google Scholar 

  34. Shah M, Wuilloud RG, Kannamkumaratha SS, Caruso JA (2005) Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J Anal At Spectrom 20(3):176–182

    Article  CAS  Google Scholar 

  35. Krajko J, Varga Z, Wallenius M, Mayer K, Konings R (2016) Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production. J Radioanal Nucl Chem 309(3):1113–1121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy’s National Nuclear Security Administration under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy under Contract DE-AC05-000R22725. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cole R. Hexel.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, N.D., Manard, B.T., Metzger, S.C. et al. Determining P, S, Br, and I content in uranium by triple quadrupole inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 324, 395–402 (2020). https://doi.org/10.1007/s10967-020-07057-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07057-0

Keywords

Navigation