Skip to main content
Log in

The effects induced by proton irradiation on structural characteristics of nuclear graphite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A grade TSX graphite was irradiated by a 2.5 MeV proton and a dose of 1.47 × 1018 ion cm−2 at 330 K. The displacement per atom under this irradiation condition was about 0.02. The lattice parameter, crystallite size and the vacancies density in the graphite was measured before and after irradiation. It was found that the proton irradiation led to an increase in the volume of the sample. The volume change in the irradiated sample was confirmed by atomic force and scanning electron microscopes observations as increased roughness and pore size. Also, FTIR results showed that graphite is slightly oxidized by irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burchell TD (1999) Carbon materials for advanced technologies. Elsevier, New York

    Google Scholar 

  2. Graphite N (1962) In: Nightingale RE (ed) Academic Press, New York

  3. Kelly BT (1982) Graphite—the most fascinating nuclear material. Carbon 20(1):3–11. https://doi.org/10.1016/0008-6223(82)90066-5

    Article  CAS  Google Scholar 

  4. Institute NSTR (2009) Final safety analyses report for Tehran research reactor. Atomic Energy Organization of Iran, Tehran

    Google Scholar 

  5. Atsumi H, Tanabe T, Shikama T (2009) Bulk hydrogen retention in neutron-irradiated graphite at elevated temperatures. J Nucl Mater 390:581–584. https://doi.org/10.1016/j.jnucmat.2009.01.112

    Article  CAS  Google Scholar 

  6. Kim E-S, Kim Y-W (2010) Characterization of 3 MeV H + irradiation induced defects in nuclear grade graphite. Solid State Commun 150(35–36):1633–1636. https://doi.org/10.1016/j.ssc.2010.06.036

    Article  CAS  Google Scholar 

  7. Pedraza D, Koike J (1994) Dimensional changes in grade H-451 nuclear graphite due to electron irradiation. Carbon 32(4):727–734. https://doi.org/10.1016/0008-6223(94)90095-7

    Article  CAS  Google Scholar 

  8. Allen T, Sridharan K, Tan L, Windes W, Cole J, Crawford D, Was GS (2008) Materials challenges for generation IV nuclear energy systems. Nucl Technol 162(3):342–357. https://doi.org/10.13182/NT08-A3961

    Article  CAS  Google Scholar 

  9. Thrower P, Reynolds W (1963) Microstructural changes in neutron-irradiated graphite. J Nucl Mater 8(2):221–226. https://doi.org/10.1016/0022-3115(63)90037-0

    Article  CAS  Google Scholar 

  10. Nightingale R (1962) Graphite in nuclear industry. Academic Press, New York, London

    Google Scholar 

  11. Was Gary S (2007) Fundamentals of radiation materials science. Springer, Berlin, Heidelberg

    Google Scholar 

  12. Izerroukenn M, Menchi O, Sari A, Djerourou W, Medjkoun H (2017) Radiation damage induced in Zircaloy-4 by 2.6 MeV proton irradiation. J Radioanal Nucl Chem 311(3):1917–1921. https://doi.org/10.1007/s10967-017-5170-9

    Article  CAS  Google Scholar 

  13. Nairy RK, Bhat NN, Anjaria K, Sreedevi B, Sapra B, Narayana Y (2014) Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae. J Radioanal Nucl Chem 302(2):1027–1033. https://doi.org/10.1007/s10967-014-3408-3

    Article  CAS  Google Scholar 

  14. Amirkhani MA, Asadabad MA, Hassanzadeh M, Mirvakili SM, Mohammadi A (2019) Calculation of dpa rate in graphite box of Tehran research reactor (TRR). Nucl Sci Tech 30(6):92. https://doi.org/10.1007/s41365-019-0621-3

    Article  Google Scholar 

  15. Campbell AA, Was GS (2014) Proton irradiation-induced creep of ultra-fine grain graphite. Carbon 77:993–1010. https://doi.org/10.1016/j.carbon.2014.06.016

    Article  CAS  Google Scholar 

  16. Heggie M, Suarez-Martinez I, Davidson C, Haffenden G (2011) Buckle, ruck and tuck: a proposed new model for the response of graphite to neutron irradiation. J Nucl Mater 413(3):150–155. https://doi.org/10.1016/j.jnucmat.2011.04.015

    Article  CAS  Google Scholar 

  17. Burchell TD, Snead LL (2007) The effect of neutron irradiation damage on the properties of grade NBG-10 graphite. J Nucl Mater 371(1–3):18–27. https://doi.org/10.1016/j.jnucmat.2007.05.021

    Article  CAS  Google Scholar 

  18. Burchell TD (2008) Irradiation induced creep behavior of H-451 graphite. J Nucl Mater 381(1–2):46–54. https://doi.org/10.1016/j.jnucmat.2008.07.022

    Article  CAS  Google Scholar 

  19. Pappano PJ, Burchell TD (2010) Preliminary data on processing and characterization of recycled irradiated graphite. Carbon 48(11):3303–3305. https://doi.org/10.1016/j.carbon.2010.05.012

    Article  CAS  Google Scholar 

  20. Feng L, Xia W, Wang T, Jiang C, Gong H, Gao B, Jiang Z, Liu X, He J (2018) Structure stability of polyaniline/graphene nanocomposites in gamma-ray environment. J Radioanal Nucl Chem 315(3):627–638. https://doi.org/10.1007/s10967-018-5710-y

    Article  CAS  Google Scholar 

  21. Cataldo F, Iglesias-Groth S (2017) Neutron damage of hexagonal boron nitride: h-BN. J Radioanal Nucl Chem 313(1):261–271. https://doi.org/10.1007/s10967-017-5289-8

    Article  CAS  Google Scholar 

  22. Hubert C, Voss KO, Bender M, Kupka K, Romanenko A, Severin D, Trautmann C, Tomut M (2015) Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in situ electrical resistivity. Nucl Instrum Methods Phys Res Sect B 365:509–514. https://doi.org/10.1016/j.nimb.2015.08.056

    Article  CAS  Google Scholar 

  23. Zhang B, Xia H, He X, He Z, Liu X, Zhao M, Zhou X (2014) Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite. Carbon 77:311–318. https://doi.org/10.1016/j.carbon.2014.05.034

    Article  CAS  Google Scholar 

  24. Simos N, Nocera P, Zhong Z, Zwaska R, Mokhov N, Misek J, Ammigan K, Hurh P, Kotsina Z (2017) Proton irradiated graphite grades for a long baseline neutrino facility experiment. Phys Rev Accel Beams 20(7):071002. https://doi.org/10.1103/PhysRevAccelBeams.20.071002

    Article  Google Scholar 

  25. Yang SJ, Choe J-M, Jin Y-G, Lim S-T, Lee K, Kim YS, Choi S, Park S-J, Hwang Y, Kim G-H (2012) Influence of H + ion irradiation on the surface and microstructural changes of a nuclear graphite. Fusion Eng Des 87(4):344–351. https://doi.org/10.1016/j.fusengdes.2012.02.065

    Article  CAS  Google Scholar 

  26. Sencer BH, Was GS, Sagisaka M, Isobe Y, Bond GM, Garner FA (2003) Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels. J Nucl Mater 323(1):18–28. https://doi.org/10.1016/j.jnucmat.2003.07.007

    Article  CAS  Google Scholar 

  27. Was G, Busby J, Allen T, Kenik E, Jensson A, Bruemmer S, Gan J, Edwards A, Scott P, Andreson P (2002) Emulation of neutron irradiation effects with protons: validation of principle. J Nucl Mater 300(2–3):198–216. https://doi.org/10.1016/S0022-3115(01)00751-6

    Article  CAS  Google Scholar 

  28. Norgett M, Robinson M, Torrens I (1975) ASTM E521, Standard practice for neutron radiation damage simulation by charged-particle irradiation. Annual book of ASTM Standards, vol. 12.02 (Philadelphia, PA: ASTM, 1996)

  29. Shabalin IL (2014) Ultra-high temperature materials I: carbon (graphene/graphite) and refractory metals. Springer, Berlin

    Book  Google Scholar 

  30. Ziegler JF, Biersack JP, Ziegler MD (2009) SRIM—the stopping and range of ions in matter (2008). SRIM co, Chester

  31. Ferreira T, Rasband W (2012) ImageJ user guide. ImageJ/Fiji 1

  32. OriginLab (2013) Origin 9.1 user guide

  33. Giddings J (1965) Dynamics of chromatography. Part I, principles and theory. M. Dekker Inc., New York

    Google Scholar 

  34. Krishna R, Wade J, Jones AN, Lasithiotakis M, Mummery PM, Marsden BJ (2017) An understanding of lattice strain, defects and disorder in nuclear graphite. Carbon 124:314–333. https://doi.org/10.1016/j.carbon.2017.08.070

    Article  CAS  Google Scholar 

  35. Seehra MS, Pavlovic AS (1993) X-ray diffraction, thermal expansion, electrical conductivity, and optical microscopy studies of coal-based graphites. Carbon 31(4):557–564. https://doi.org/10.1016/0008-6223(93)90109-N

    Article  CAS  Google Scholar 

  36. Maire J, Mering J (1970) Graphitization of soft carbons. Chem Phys Carbon 6:125–190

    CAS  Google Scholar 

  37. Franklin RE (1951) The structure of graphitic carbons. Acta Crystallogr A 4(3):253–261. https://doi.org/10.1107/S.365110X51000842

    Article  CAS  Google Scholar 

  38. Houska C, Warren B (1954) X-ray study of the graphitization of carbon black. J Appl Phys 25(12):1503–1509. https://doi.org/10.1063/1.1702373

    Article  CAS  Google Scholar 

  39. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  40. Lutterotti L (2011) Maud version 2.8

  41. Popa N (1998) The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement. J Appl Crystallogr 31(2):176–180. https://doi.org/10.1107/S0021889897009795

    Article  CAS  Google Scholar 

  42. Warren BE (1969) X-ray diffraction. Courier Corporation, North Chelmsford

    Google Scholar 

  43. Krishna R, Jones A, McDermott L, Marsden B (2015) Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy. J Nucl Mater 467:557–565. https://doi.org/10.1016/j.jnucmat.2015.10.027

    Article  CAS  Google Scholar 

  44. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  45. Niwase K, Tanabe T, Tanaka I (1992) Annealing experiment of ion-irradiated graphite by laser Raman spectroscopy. J Nucl Mater 191:335–339. https://doi.org/10.1016/S0022-3115(09)80061-5

    Article  Google Scholar 

  46. Dent G, Smith G (2005) Modern Raman spectroscopy: a practical approach. Wiley, London

    Google Scholar 

  47. Nakamizo M, Honda H, Inagaki M (1978) Raman spectra of ground natural graphite. Carbon 16(4):281–283. https://doi.org/10.1016/0008-6223(78)90043-X

    Article  CAS  Google Scholar 

  48. Adeli R, Shirmardi SP, Abbasi H, Ahmadi SJ (2018) Effect of neutron irradiation on neat epoxy resin stability in shielding applications. Sci Eng Compos Mater 25(4):725–729. https://doi.org/10.1515/secm-2016-0312

    Article  CAS  Google Scholar 

  49. Elman B, Dresselhaus M, Dresselhaus G, Maby E, Mazurek H (1981) Raman scattering from ion-implanted graphite. Phys Rev B 24(2):1027. https://doi.org/10.1103/PhysRevB.24.1027

    Article  CAS  Google Scholar 

  50. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4(2):385–393. https://doi.org/10.1557/JMR.1989.0385

    Article  CAS  Google Scholar 

  51. Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42(8–9):1713–1721. https://doi.org/10.1016/j.carbon.2004.03.005

    Article  CAS  Google Scholar 

  52. Wu K, Chang S, Hwang J, Lee C-Y, Tang H-C, Chen C-W, Liu C, Wei H, Kou C, Lee C-D (2007) Passivation effect on the liquid crystal alignment on a-C: H films: a two-step treatment by argon and hydrogen plasma beam scanning. J Appl Phys 101(2):023531. https://doi.org/10.1063/1.2432044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asadi Asadabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, M.A., Asadi Asadabad, M., Hassanzadeh, M. et al. The effects induced by proton irradiation on structural characteristics of nuclear graphite. J Radioanal Nucl Chem 321, 701–709 (2019). https://doi.org/10.1007/s10967-019-06615-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06615-5

Keywords

Navigation