Skip to main content
Log in

Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. da Cruz AD, Glickman BW (1997) Environ Mol Mutagen 30(4):385–395

    Article  Google Scholar 

  2. Kovacs E, Keresztes A (2002) Micron 33:199–210

    Article  CAS  Google Scholar 

  3. Ahuja S, Kumar M, Kumar P, Gupta VK, Singhal RK, Yadav A, Singh B (2014) J Radioanal Nucl Chem 300:199–212

    Article  CAS  Google Scholar 

  4. Chen H, Luo J, Li X, Peng L, Ru J (2013) J Radioanal Nucl Chem 298:443–447

    Article  CAS  Google Scholar 

  5. Ostling O, Johanson KJ (1984) Biochem Biophys Res Commun 123(1):291–298

    Article  CAS  Google Scholar 

  6. Löbrich M, Kühne M, Wetzel J, Rothkamm K (2000) Genes Chromosom Cancer 27(1):59–68

    Article  Google Scholar 

  7. Khanna KK, Jackson SP (2001) Nat Genet 27(3):247–254

    Article  CAS  Google Scholar 

  8. Rodemann HP, Blaese MA (2007) Semin Radiat Oncol 17(2):81–88

    Article  Google Scholar 

  9. Sowa M, Arthurs BJ, Estes BJ, Morgan WF (2006) EXS 96:293–301

    CAS  Google Scholar 

  10. Li Fengbo, Gao Zhimo, Li Xiaoyu, Fang Lejin (2014) J Radioanal Nucl Chem 299:1281–1286

    Article  CAS  Google Scholar 

  11. Sabol Jozef, Ralbovska Rebeka, Hudzietzova Jana (2014) J Radioanal Nucl Chem 299:849–854

    Article  CAS  Google Scholar 

  12. Markovic VM, Stevanovic N, Nikezic D, Pucic DF, Urosevic V (2014) J Radioanal Nucl Chem 299:1723–1730

    Article  CAS  Google Scholar 

  13. Kiefer J, Hubert B (1979) Radiat Res 77(3):472–478

    Article  CAS  Google Scholar 

  14. Zhang H, Semenza GL (2008) J Mol Med (Berl) 86(7):739–746

    Article  Google Scholar 

  15. Sprong D, Janssen HL, Vens C, Begg AC (2006) Int J Radiat Oncol Biol Phys 64(2):562–572

    Article  CAS  Google Scholar 

  16. Overgaard J, Horsman MR (1996) Semin Radiat Oncol 6(1):10–21

    Article  Google Scholar 

  17. Astor MB (1984) Br J Radiol 57(680):717–722

    Article  CAS  Google Scholar 

  18. Biaglow JE, Varnes ME, Clark EP, Epp ER (1983) Radiat Res 95(3):437–455

    Article  CAS  Google Scholar 

  19. Prise KM, Gillies NE, Michael BD (1999) Radiat Res 151(6):635–641

    Article  CAS  Google Scholar 

  20. Quintiliani M (1986) Int J Radiat Biol Relat Stud Phys Chem Med 50(4):573–594

    Article  CAS  Google Scholar 

  21. Michael BD, Adams GE, Hewitt HB, Jones WB (1973) Radiat Res 54(2):239–251

    Article  CAS  Google Scholar 

  22. Wenzl T, Wilkens JJ (2011) Radiat Oncol 6:171

    Article  CAS  Google Scholar 

  23. Brookins DG (1984) Geochemical aspects of radioactive waste disposal. Springer, New York, p 347

    Book  Google Scholar 

  24. Chapman NA, Smellie JAT (1986) Chem Geol 55:167–173

    Article  Google Scholar 

  25. Jiang MY, Ohnuki T, Yamasaki S, Tanaka K, Utsunomiya S (2013) J Radioanal Nucl Chem 295:2283–2287

    Article  CAS  Google Scholar 

  26. Linnane AW, Haslam JM, Lukins HB, Nagley P (1972) Ann Rev Microbiol 41:333–369

    Google Scholar 

  27. Attix FH (1986) Introduction to radiological physics and radiation dosimetry, a Wiley-Interscience Publication. Wiley, New York

    Book  Google Scholar 

  28. Spinks JWT, Woods RJ (1976) An introduction to radiation chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  29. Malathi N, Sahoo P, Praveen K, Murali N (2013) J Radioanal Nucl Chem 298:963–972

    Article  CAS  Google Scholar 

  30. Fricke H, Hart EJ (1966) In: Attix FH, Roesch WC (eds) Radiation dosimetry, vol II. Academy Press, New York

  31. Pearson J, Jan O, Wariner A, Miller GE, Nilsson M (2013) J Radioanal Nucl Chem 298:1401–1409

    Article  CAS  Google Scholar 

  32. Reddy NM, Rao BS (1981) Radiat Environ Biophys 19(3):187–195

    Article  CAS  Google Scholar 

  33. Lea DE (1946) Actions of radiations on living cells. Cambridge University Press, Cambridge

    Google Scholar 

  34. Joseph P, Acharya S, Sanjeev G, Bhat NN, Narayana Y (2011) J Radioanal Nucl Chem 290:209–214

    Article  CAS  Google Scholar 

  35. Ling CC, Spiro IJ, Mitchell J, Stickler R (1985) Int J Radiat Oncol Biol Phys 11(7):1367–1373

    Article  CAS  Google Scholar 

  36. Roots R, Chatterjee A, Chang P, Lommel L, Blakely EA (1985) Int J Radiat Biol Relat Stud Phys Chem Med 47(2):157–166

    Article  CAS  Google Scholar 

  37. Hirayama R, Furusawa Y, Fukawa T, Ando K (2005) J Radiat Res 46(3):325–332

    Article  CAS  Google Scholar 

  38. Meyn RE, van Ankeren SC, Jenkins MT (1987) Radiat Res 109(3):419–429

    Article  CAS  Google Scholar 

  39. Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DS (2005) Biochemistry 44(6):1932–1940

    Article  CAS  Google Scholar 

  40. Hagen U, Wellstein H (1965) Strahlentherapie 128(4):565–576

    CAS  Google Scholar 

  41. Polo SE, Jackson SP (2011) Genes Dev 25(5):409–433

    Article  CAS  Google Scholar 

  42. Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Thompson LH (1996) Mol Cell Biol 16(11):6553–6562

    CAS  Google Scholar 

  43. Sijbers AM, de Laat WL, Ariza RR, Biggerstaft M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD (1996) Cell 86(5):811–822

    Article  CAS  Google Scholar 

  44. Resnick MA, Martin P (1976) Mol Gen Genet 143(2):119–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors from Mangalore University are grateful to Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the financial support. Authors are thankful to Dr. D.N. Sharma, Director, HSE&G, BARC, Mr.D.A.R.Babu, Head, RP&AD, BARC, India for technical discussions, support and help. Technical assistance during the experiments by Mr. U. B. Thorat, Mr. S. Jagtap and Mr. P. J. Tondlekar are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yerol Narayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nairy, R.K., Bhat, N.N., Anjaria, K.B. et al. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae . J Radioanal Nucl Chem 302, 1027–1033 (2014). https://doi.org/10.1007/s10967-014-3408-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3408-3

Keywords

Navigation