Skip to main content
Log in

EQRAIN: uranium and plutonium interlaboratory exercises from 1997 to 2016—comparison to ITVs-2010

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2019

This article has been updated

Abstract

Since 1987, the CEA’s Committee for the establishment of analysis methods (CETAMA) has regularly implemented interlaboratory comparisons, entitled “evaluation of the quality results of analysis in the nuclear industry” (EQRAIN). Notably, the EQRAIN U and EQRAIN Pu interlaboratory comparisons assess proficiency in measuring a mass content of uranium or plutonium in reference solutions. This paper presents the results of measurement uncertainty assessments from EQRAIN U and EQRAIN Pu comparisons over 20 years of exercises (1997–2016). The mathematical approach developed in this work allowed to estimate the impact of short-term systematic and random errors to the overall uncertainty of each analytical method used in the interlaboratory comparison program. This statistical analysis shows a good consistency between measurement uncertainty values from EQRAINs and the measurement uncertainty target values established by the International Atomic Energy Agency for nuclear material balances (ITVs-2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 12 June 2019

    In the original publication of the article, the values of <Emphasis Type="Italic">u</Emphasis>(<Emphasis Type="Italic">s</Emphasis>), <Emphasis Type="Italic">u</Emphasis>(<Emphasis Type="Italic">r</Emphasis>) and <Emphasis Type="Italic">ITV</Emphasis> for HKED were published incorrectly in Table 6.

Notes

  1. Abbreviations for the analytical methods are those used in ITVs-2010 document [6], except for Mallinckrodt method (MALL).

Abbreviations

CETAMA:

CEA Committee for the establishment of analysis methods

EQRAIN:

Quality assessment of analysis results in the nuclear industry

ITVs-2010:

International target values of measurement uncertainties from IAEA published in 2010

u(s):

Component of ITV, standard uncertainty of the measurement short-term systematic error, data from IAEA

u(r):

Component of ITV, standard uncertainty of the measurement random error, data from IAEA

WG2:

CETAMA’s Working Group on uranium

WG3:

CETAMA’s Working Group on plutonium

i :

Result code i: i = 1 to n

j :

EQRAIN j: j = 1 to p

x :

Measurement result

x ref :

Reference value

d :

Deviation of x from xref

\(\overline{d}\) :

Mean of d

σ(d)2 :

Variance of d

b j :

Short-term systematic error of dij, creation of B ~ N (0, σ(d) 2 s )

σ(d) 2 s :

Variance of B

u(d) 2 s :

Estimation of σ(d) 2 s , variance of B

e ij :

Random error of dij, creation of ε ~ N (0, σ(d) 2 r )

σ(d) 2 r :

Variance of ε

u(d) 2 r :

Estimation of σ(d) 2 r , variance of ε

u(x):

Measurement standard uncertainty, estimated from EQRAINs

u(x)s :

Component of u(x), standard uncertainty of the measurement short-term systematic error, estimated from EQRAINs

u(x)r :

Component of u(x), standard uncertainty of the measurement random error, estimated from EQRAINs

n eff :

Effective number of reported results par EQRAIN

u rel :

Relative standard uncertainty

U :

Expanded uncertainty (with a coverage factor k of 2)

References

  1. International Atomic Energy Agency. IAEA Safeguards Glossaty 2001 edition, para. 6.35, International Nuclear Verification Series No.3, Vienna

  2. ISO 17043:2010. Conformity assessment—general requirements for proficiency testing. International Organization for Standardization, Geneva, Switzerland

  3. ISO 17034:2016. General requirements for the competence of reference materials producers. International Organization for Standardization, Geneva, Switzerland

  4. ISO Guide 35 (2006) Reference materials—general and statistical principles for certification. International Organization for Standardization, Geneva

    Google Scholar 

  5. ISO 13528:2015, ISO/TC69/SC6. Statistical methods for use in proficiency testing by interlaboratory comparison. International Organization for Standardization, Geneva, Switzerland

  6. International Atomic Energy Agency, Departement of Safeguards, STR-368 (2010) International target values 2010 for measurement uncertainties in safeguarding nuclear materials. IAEA, Vienna

    Google Scholar 

  7. Srinivasan B, Mathew KJ, Croatto P, Narayanan U, Neuhoff N (2007) New Brunswick Laboratory safeguards measurement evaluation (SME) program: operational features. Int J Nucl Knowl Manag 1:17–39

    Google Scholar 

  8. Regular European Interlaboratory Measurement Evaluation Program, REIMEP. https://ec.europa.eu/jrc/en/interlaboratory-comparisons/REIMEP. Accessed 8 Jan 2019

  9. Jakopic R, Aregbe Y, Bujak R, Richter S, Buda R, Zuleger E (2015) Accred Qual Assur 20:421–429

    Article  CAS  Google Scholar 

  10. Pereira de Oliveira O, De Bolle W, Richter S, Alonso A, Kühn H, Sarkis JES, Wellum R (2005) Int J Mass Spectrom 246:35–42

    Article  CAS  Google Scholar 

  11. Srinivasan B, Mathew KJ, Narayanan UI, Guthrie WF, Sampson TE (2009) J Radioanal Nucl Chem 282:963–970

    Article  CAS  Google Scholar 

  12. Bürger S, Balsley SD, Baumann S, Berget J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Int J Mass Spectrom 311:40–50

    Article  CAS  Google Scholar 

  13. Raptis K, Duhamel G, Ludwig R, Balsley S, Bürger S, Mayorov V, Koepf A, Hara S, Itoh Y, Yamaguchi K, Yamaguchi T, Ninagawa J (2013) J Radioanal Nucl Chem 296:585–592

    Article  CAS  Google Scholar 

  14. Statistical concepts and techniques for IAEA Safeguards (1998) 15 edn. IAEA/SG/SCT/5, International Atomic Energy Agency IAEA Vienna

  15. Walsh SJ, Venzin A, Wegrzynek D, Mansoux C (2016) Using reproducibility to test the adequacy of GUM based uncertainty quantification. In: Paper of the American nuclear society conference: advances in nuclear nonproliferation technology and policy conference: bridging the gaps in nuclear nonproliferation, Sante Fe, New Mexico

  16. Jaech JL (1985) Statistical analysis of measurement errors. Wiley, New-York

    Google Scholar 

  17. ISO 3534-1:2006. Statistics _ vocabulary and symbols _ Part 1: general statistical terms and terms used in probability

  18. JCGM 200:2012. International vocabulary of metrology—basic and general concepts and associated terms (VIM), 3rd edn. 2008 version with minor corrections

  19. JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections

  20. Certificat de matériau de référence “AGARIC”, Lot 2001/1, Version 3 2017, avalailable on request to the CETAMA

  21. Certificat de matériau de référence “OTU-1”, Lot 1993/1, Version 3 2017, avalailable on request to cetama@cea.fr

  22. Certificat du matériau de référence plutonium métal «MP2», Lot 1987/1, Version 09-2016, avalailable on request to cetama@cea.fr

  23. Wagner JF, Vian A (1999) Techniques de l’Ingénieur P3720:V2

    Google Scholar 

  24. Handbook of Stable Isotope Analytical Techniques (2004)Volume I Pages 820–834 Chapter 37—introduction to isotope dilution mass spectrometry (IDMS), Michale Berglund, https://doi.org/10.1016/B978-044451114-0/50039-9

  25. Bedson P (2007) Guidelines for achieving high accuracy in isotope dilution mass spectrometry (IDMS), Royal Society of Chemistry, Analytical Methods Committee, Sub-Committee on High Accuracy Analysis by Mass Spectrometry, Coordinating Editors Sargent M, Harte R, Harrington C

  26. ISO 7097–2 (2004) Nuclear fuel technology—determination of uranium in solutions, uranium hexafluoride and solids—part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  27. https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/339/8339826.pdf; http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/08/345/8345998.pdf

  28. Davies W, Gray W (1964) Talanta 11:1203

    Article  CAS  Google Scholar 

  29. Eberle AR, Lerner MW, Goldbeck CG, Rodden CJ (1970) U.S.Atomic Energy Commission, New Brunswick, NJ, NBL-252

  30. Aigner H, Hollenthoner S, Keroe E, Kuhn E, Delle Site A, Zoigner A (1983) Fifth annual symposium on safeguards and nuclear materials management. Versailles, France

    Google Scholar 

  31. Harrar JE, Boyle WG, Breshears JD, Pomernacki CL, Brand HR,Kray AM, Sherry RJ, Pastrone JA (1976) Proc. Inst. of nuclear materials management meeting, Seattle

  32. Reeder SD, Delmastro JR (1978) NBS Publication, p 528

  33. Zook AC, Collins LL, Moran BW 980 NBL-293, NewBrunswick Laboratory, USDOE

  34. Goldbeck CG, Lerner MW (1972) Anal Chem 44:594

    Article  CAS  Google Scholar 

  35. Goldbeck CG, Lerner MW, Peoples GE (1973) Annual progress report for the period July 1972 to June 1973, U.S. Atomic Energy Commission, New Brunswick Laboratory, NJ, NBL-267

  36. Mathew KJ, Bürger S, Vogt S, Mason P, Morales-Arteaga ME, Narayanan I (2009) J Radioanal Nucl Chem 282:939–944

    Article  CAS  Google Scholar 

  37. Ronesch K, Jammet G, Berger J, Doubek N, Bagliano G, Deron S, Kuvik V (1992) IAEA/AL/059. https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/000/24000051.pdf. Accessed 8 Jan 2019

  38. Lecouteux C et al (1992) Anal Chim Acta 256:163–176

    Article  Google Scholar 

  39. JMP® 13.0.0 (Statistical Discovery), SAS Institute Inc. http://www.jmp.com/software/. Accessed 8 Jan 2019

  40. Linsinger TPJ, Pauwels J, Van der Veen AMH, Schimmel H, Lamberty A (2001) Accred Qual Assur 6:20–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all members of Working Group “Uranium” (CETAMA WG2) and Working Group “Plutonium” (CETAMA WG3) from 1997 up to now, without whom this paper would not exist, and particularly the WG chairs: Michel Sourrouille (chair of WG2 from 1997 to 2004), Charles Kiper (chair of WG2 from 2004 to 2012), Manuel Organista (chair of WG2 from 2012 to 2018), Serge Amoravain (chair of WG3 from 1994 to 1999), Hervé Chollet (chair of WG3 from 1999 to 2008), Carole Viallesoubranne (chair of WG3 from 2008 to 2009), Jean-Marc Adnet (chair of WG3 from 2009 to 2013), and Alexandre Ruas (chair of WG3 from 2013 to 2015). We are also grateful to the LAMMAN staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielle Crozet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crozet, M., Roudil, D., Rigaux, C. et al. EQRAIN: uranium and plutonium interlaboratory exercises from 1997 to 2016—comparison to ITVs-2010. J Radioanal Nucl Chem 319, 1013–1021 (2019). https://doi.org/10.1007/s10967-018-6399-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6399-7

Keywords

Navigation