Skip to main content
Log in

Electrochemical degradation of spent tributyl phosphate extractant by a boron-doped diamond anode

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effects of the main operation variables on the electrochemical oxidation of simulated tributyl phosphate (TBP) waste by a boron-doped diamond anode are individually studied. The optimum operating conditions are obtained as follows: 4 g L−1 initial TBP concentration, 180 min degradation time, 40 mA cm−2 current density, 0.5 mol L−1 Na2SO4 as the supporting electrolyte, and unadjusted pH of the aqueous phase. Under such conditions, a chemical oxygen demand (COD) removal ratio of 82.3% is achieved, and the energy consumption is 26.16 kWh m−3. A degradation mechanism of TBP is tentatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Kiliari T, Pashalidis I (2010) Alpha spectroscopic analysis of actinides (Th, U and Pu) after separation from aqueous solutions by cation-exchange and liquid extraction. J Radioanal Nucl Chem 284:547–551

    Article  CAS  Google Scholar 

  2. Pente AS, Gireesan P, Thorat V, Katarani VG, Kaushik CP, Das D, Raj K (2008) Study of different approaches for management of contaminated emulsified aqueous secondary waste. Desalination 232:206–215

    Article  CAS  Google Scholar 

  3. Ambashta RD, Sillanpää M (2011) Experimental design of application of nanoscale iron–nickel under sonication and static magnetic field for mixed waste remediation. J Hazard Mater 189:167–172

    Article  CAS  Google Scholar 

  4. Wang S, Qin Q, Chen K, Xia X, Ma H, Qiao Y, He L (2015) Supercritical water oxidation of spent extraction solvent simulants. Nucl Sci Technol 26:030601

    Google Scholar 

  5. Mabrouk M, Lemont F, Baronnet JM (2012) Incineration of radioactive organic liquid wastes by underwater thermal plasma. J Phys Conf Ser 406:012002

    Article  Google Scholar 

  6. Toshiki S, Tomoyuki S, Hayato K, Hiromi Y (2009) Steam-assisted pyrolysis system for decontamination and volume reduction of radioactive organic waste. J Nucl Sci Technol 3:232–238

    Google Scholar 

  7. Valsala TP, Sonavane MS, Kore SG, Sonar NL, De V, Raghavendra Y, Chattopadyaya S, Dani U, Kulkarni Y, Changrani RD (2011) Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products. J Hazard Mater 196:22–28

    Article  CAS  Google Scholar 

  8. El-Dessouky MI, El-Aziz MMA, Mossalamy EHE, Aly HF (2001) Wet-oxidation of spent organic waste tributyl phosphate/diluents. J Radioanal Nucl Chem 3:643–647

    Google Scholar 

  9. Srinivasan R, Chinnusamy A, Sudhagar S, Ravi TN (2012) Electro-oxidative process for the mineralization of solvent and recovery of plutonium from organic wastes. J Radioanal Nucl Chem 291:681–684

    Article  CAS  Google Scholar 

  10. Ferreira RVDP, Sakata SK, Dutra F, Vitta PBD, Taddei MHT, Bellini MH, Marumo JK (2012) Treatment of radioactive liquid organic waste using bacteria community. J Radioanal Nucl Chem 292:811–817

    Article  CAS  Google Scholar 

  11. Rangu SS, Muralidharan B, Tripathi SC, Apte SK (2014) Tributyl phosphate biodegradation to butanol and phosphate and utilization by a novel bacterial isolate, Sphingobium sp. strain RSMS. Appl Microbiol Biotechnol 98:2289–2296

    Article  CAS  Google Scholar 

  12. Watts MJ, Linden KG (2008) Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water. Water Res 42:4949–4954

    Article  CAS  Google Scholar 

  13. Šelešovská R, Štěpánková M, Janíková L, Nováková K, Vojs M, Marton M, Behúl M (2016) Surface and electrochemical characterization of boron-doped diamond electrodes prepared under different conditions. Monatsh Chem 147:1353–1364

    Article  Google Scholar 

  14. Bai H, He P, Pan J, Chen J, Chen Y, Dong F, Li H (2017) Boron–doped diamond electrode: preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. J Colloid Interface Sci 497:422–428

    Article  CAS  Google Scholar 

  15. Zhang J, Oyama M (2004) Electroanalysis of myoglobin and hemoglobin with a boron-doped diamond electrode. Microchem J 78:217–222

    Article  CAS  Google Scholar 

  16. Yu H, Wang H, Quan X, Chen S, Zhang Y (2007) Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor. Electrochem Commun 9:2280–2285

    Article  CAS  Google Scholar 

  17. Canizares P, Saez C, Sanchez-Carretero A, Rodrigo MA (2008) Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. Electrochem Commun 10:602–606

    Article  CAS  Google Scholar 

  18. He Y, Huang W, Chen R, Zhang W, Lin H (2015) Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium. Sep Purif Technol 149:124–131

    Article  CAS  Google Scholar 

  19. Wu H, Sun J, Zheng L, Li X, Gao C (2016) Detection of hydroxyl radical in the electro catalytic system of BDD electrode. In: IEEE international conference on mechatronics and automation, pp 558–562

  20. Salazar C, Contreras N, Mansilla HD, Yánez J, Salazar R (2016) Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode. J Hazard Mater 319:84–92

    Article  CAS  Google Scholar 

  21. Sun J, Lu H, Lin H, Du L, Huang W, Li H, Cui T (2012) Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode. Sep Purif Technol 88:116–120

    Article  CAS  Google Scholar 

  22. Hou Y, Qu J, Zhao X, Liu H (2009) Electrochemical incineration of dimethyl phthalate by anodic oxidation with boron-doped diamond electrode. J Environ Sci China 21:1321–1328

    Article  CAS  Google Scholar 

  23. Panizza M (2014) Anodic oxidation of benzoquinone using diamond anode. Environ Sci Pollut Res 21:8451–8456

    Article  CAS  Google Scholar 

  24. Jardak K, Dirany A, Drogui P, Khakani MAE (2016) Electrochemical degradation of ethylene glycol in antifreeze liquids using boron doped diamond anode. Sep Purif Technol 168:215–222

    Article  CAS  Google Scholar 

  25. Jalife-Jacobo H, Feria-Reyes R, Serrano-Torres O, Gutiérrez-Granados S, Peralta-Hernández JM (2016) Diazo dye congo red degradation using a boron-doped diamond anode: an experimental study on the effect of supporting electrolytes. J Hazard Mater 319:78–83

    Article  CAS  Google Scholar 

  26. Yavuz Y, Shahbazi R (2012) Anodic oxidation of reactive black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep Purif Technol 85:130–136

    Article  CAS  Google Scholar 

  27. Pereira GF, El-Ghenymy A, Thiam A, Carlesi C, Eguiluz KIB, Salazar-Banda GR, Brillas E (2016) Effective removal of orange-G azo dye from water by electro-fenton and photoelectro-fenton processes using a boron-doped diamond anode. Sep Purif Technol 160:145–151

    Article  CAS  Google Scholar 

  28. Zou J, Peng X, Li M, Xiong Y, Wang B, Dong F, Wang B (2017) Electrochemical oxidation of COD from real textile wastewaters: kinetic study and energy consumption. Chemosphere 171:332–338

    Article  CAS  Google Scholar 

  29. Ellouze S, Panizza M, Barbucci A, Cerisola G, Mhiri T (2016) Ferulic acid treatment by electrochemical oxidation using a BDD anode. J Taiwan Inst Chem Eng 59:132–137

    Article  CAS  Google Scholar 

  30. Hernández MC, Russo N, Panizza M, Spinelli P, Fino D (2014) Electrochemical oxidation of urea in aqueous solutions using a boron-doped thin-film diamond electrode. Diam Relat Mater 44:109–116

    Article  Google Scholar 

  31. Ammar HB, Brahim MB, Abdelhédi R, Samet Y (2016) Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation. Sep Purif Technol 157:9–16

    Article  CAS  Google Scholar 

  32. Panizza M, Clematis D, Cerisola G (2016) Electrochemical treatment of poorly biodegradable DPC cationic surfactant. J Environ Chem Eng 4:2692–2697

    Article  CAS  Google Scholar 

  33. Geerdink RB, Hurk RS, Epema OJ (2017) Chemical oxygen demand: historical perspectives and future challenges. Anal Chim Acta 961:1–11

    Article  CAS  Google Scholar 

  34. Wang B, Xiong Y, Xia L, Zhang H, Zhang K, Meng X (2011) High-current electron emission characteristics of cathodes based on diamond films. Diam Relat Mater 20:433–438

    Article  Google Scholar 

  35. Chen J, Liu S, Qi X, Yan S, Guo Q (2018) Study and design on chemical oxygen demand measurement based on ultraviolet absorption. Sens Actuator B 254:778–784

    Article  CAS  Google Scholar 

  36. Williams KE, Haswell SJ, Barclay DA, Preston G (1993) Determination of total phosphate in waste waters by on-line microwave digestion incorporating colorimetric detection. Analyst 118:245–248

    Article  CAS  Google Scholar 

  37. Rabaaoui N, Moussaoui Y, Allagui MS, Ahmed B, Elaloui E (2013) Anodic oxidation of nitrobenzene on BDD electrode: variable effects and mechanisms of degradation. Sep Purif Technol 107:318–323

    Article  CAS  Google Scholar 

  38. Xing X, Zhu X, Li H, Jiang Y, Ni J (2012) Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode. Chemosphere 86:368–375

    Article  CAS  Google Scholar 

  39. Zhou B, Yu Z, Wei Q, Long H, Xie Y, Wang Y (2016) Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. Appl Surf Sci 377:406–415

    Article  CAS  Google Scholar 

  40. Taylor G, Bates C, Stadelmann M, Kraft A, Matthee T (2003) Evaluation of electro-oxidation using diamond anodes for the treatment of radioactive contaminated lubricants-Preliminary report. New Diamond Front Carbon Technol 13:89–96

    CAS  Google Scholar 

  41. Moussa D, Brisset JL (2003) Disposal of spent tributylphosphate by gliding arc plasma. J Hazard Mater B102:189–200

    Article  Google Scholar 

  42. Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Effect of anions on electrochemical degradation of azo dye carmoisine (acid red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 140:43–52

    Article  CAS  Google Scholar 

  43. Ganesh S, Velavendan P, Pandey NK, Ahmed MK, Mudali UK, Natarajan R (2012) Spectrophotometric determination of dissolved tri n-butyl phosphate in aqueous streams of Purex process. J Radioanal Nucl Chem 293:529–533

    Article  CAS  Google Scholar 

  44. Dicholkar DD, Patil LK, Gaikar VG, Kumar S, Mudali UK, Natarajan R (2012) Direct determination of tri-n-butyl phosphate by HPLC and GC methods. J Radioanal Nucl Chem 291:739–743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Key Scientific Projects for Decommissioning of Nuclear Facilities and Radioactive Waste Management of China (14zg6101) and Longshan Academic Talent Research Supporting Program of SWUST (17LZX402) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yang, P., Pu, Y. et al. Electrochemical degradation of spent tributyl phosphate extractant by a boron-doped diamond anode. J Radioanal Nucl Chem 315, 29–37 (2018). https://doi.org/10.1007/s10967-017-5635-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5635-x

Keywords

Navigation