Skip to main content
Log in

Production, separation and embedment of no-carrier added 93mMo in iron-doped calcium alginate beads from 7Li irradiated yttrium target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

No-carrier-added 93mMo radionuclide is a promising candidate in the field of radiopharmaceuticals. In the present investigation 93mMo was produced by 7Li irradiation of natural Y-foil target following the reaction natY(7Li,3n)93mMo and was separated from the bulk Y target using iron-doped calcium alginate (Fe-CA) hydrogel beads. High separation factor (S Mo/Y = 4.38 × 102) was obtained. The isotopically pure 93mMo could also be embedded in Fe-CA beads, which might act as smart material for administration to human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Swart J, Chan HS, Goorden MC, Morgenstern A, Bruchertseifer F, Beekman FJ, de Jong M, Konijnenberg MW (2016) Utilizing high-energy γ-photons for high-resolution 213Bi SPECT in mice. J Nucl Med 57:486–492

    Article  Google Scholar 

  2. http://www.nndc.bnl.gov/chart. Accessed 05 July 2017

  3. Ditrói F, Tackás S, Tárkányi F, Baba M, Corniani E, Shubin Y (2008) Study of proton induced reactions on niobium targets up to 70 MeV. Nucl Instrum Methods B 266:5087–5100

    Article  Google Scholar 

  4. Sadeghi M, Enferadi M, Nadi H, Tenreiro C (2010) A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J Radioanal Nucl Chem 286:141–144

    Article  CAS  Google Scholar 

  5. Tárkányi F, Hermanne A, Ditrói F, Tackás S, Király B, Baba M, Kovalev SF, Ignatyuk AV (2007) Production of longer lived radionuclides in deuteron induced reactions on niobium. Nucl Instrum Methods B 255:297–303

    Article  Google Scholar 

  6. Ditrói F, Tárkányi F, Ali MA (2000) Investigation of deuteron induced nuclear reactions on niobium. Nucl Instrum Methods B 161–163:172–177

    Article  Google Scholar 

  7. Lahiri S, Mukhopadhyay B, Das NR (1998) Studies on liquid–liquid extraction of no-carrier-added 91,92,96Nb and 93mMo isotopes produced in a-particle activated zirconium target with HDEHP. Radiochim Acta 83:93–95

    Article  CAS  Google Scholar 

  8. Nayak D, Lahiri S (2008) Production of 93mMo through natY(7Li, 3n) reaction and subsequent studies on separation and extraction behaviour of no-carrier-added 93mMo from an yttrium target. Appl Radiat Isot 66:1793–1798

    Article  CAS  Google Scholar 

  9. Silantév AI, Maklachkov AG, Iofa BZ (1985) Separation of carrier-free Mo-93 from niobium targets. Sov Radiochem 27:638–639

    Google Scholar 

  10. Mandal S, Mandal A, Lahiri S (2013) Species dependent extraction of 99Mo. J Radioanal Nucl Chem 295:861–863

    Article  CAS  Google Scholar 

  11. Das NR, Lahiri S (1991) Liquid ion exchangers and their uses in the separation of zirconium, niobium, molybdenum, hafnium, tantalum and tungsten. Solvent Extr Ion Exch 9:337–381

    Article  CAS  Google Scholar 

  12. Mandal S, Lahiri S (2013) Cloud point extraction of 99Mo with Triton X-114. J Radioanal Nucl Chem 295:1361–1364

    Article  CAS  Google Scholar 

  13. Nayak D, Lahiri S (2009) Immobilisation of no-carrier-added 93mMo on a biopolymer calcium alginate: a candidate radiopharmaceutical. J Radioanal Nucl Chem 281:181–183

    Article  CAS  Google Scholar 

  14. Mandal S, Nayak D (2010) Species dependent studies of no-carrier-added 93mMo: a green method. Appl Radiat Isot 68:1892–1895

    Article  CAS  Google Scholar 

  15. Stops F, Fell JT, Collett JH, Martini LG, Sharma HL, Smith AM (2006) The use of citric acid to prolong the in vivo gastro retention of a floating dosage form in the fasted state. Int J Pharm 308:8–13

    Article  CAS  Google Scholar 

  16. Azhdarinia A, Yang DJ, Yu DF, Mendez R, Oh C, Kohanim S, Bryant J, Kim EE (2005) Regional radiochemotherapy using in situ hydrogel. Pharm Res 22:776–783

    Article  CAS  Google Scholar 

  17. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65

    Article  CAS  Google Scholar 

  18. Mandal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115–118

    Article  CAS  Google Scholar 

  19. Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769–775

    Article  CAS  Google Scholar 

  20. Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Radiat Isot 65:891–896

    Article  CAS  Google Scholar 

  21. Sarkar K, Lahiri S, Sen K (2017) Incorporation of no-carrier added 200,203Pb and 200,201,202Tl in calcium alginate and hesperidin incorporated calcium alginate beads. Appl Radiat Isot 121:16–21

    Article  CAS  Google Scholar 

  22. Sarkar K, Lahiri S, Sen K (2016) Separation of no-carrier-added 203Pb, a surrogate radioisotope, from proton irradiated natTl2CO3 target using calcium alginate hydrogel beads. Radiochim Acta 104:891–896

    Article  CAS  Google Scholar 

  23. Sarkar K, Sen K, Lahiri S (2017) Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J Radioanal Nucl Chem 311:2001–2006

    Article  CAS  Google Scholar 

  24. Moore LE (2003) The advantages and disadvantages of endoscopy. Clin Tech Small Anim Pract 18:250–253

    Article  Google Scholar 

  25. Leah H (2011) Clinical naturopathic medicine. University of Elsevier, Western Sydney. ISBN 9780729582261

  26. Choi A-J, Buisson N, Kim C-T (2015) Digestion characteristics and kinetic analysis of biomolecules in a simulated human intestinal system. Integr Food Nutr Metab 2:189–192

    Article  Google Scholar 

  27. Momilovi B (1999) A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the “Lucor metallicum” family. Arh hig rada toksikol 50:289–297

    Google Scholar 

  28. Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165–173

    Article  CAS  Google Scholar 

  29. Sarkar K, Sen K (2015) On the design of Ag–morin nanocomposite to modify calcium alginate gel: framing out a novel sodium ion trap. RSC Adv 5:57223–57230

    Article  CAS  Google Scholar 

  30. Banerjee A, Nayak D, Lahiri S (2007) New method of synthesis of iron doped calcium alginate beads and determination of iron content in the beads by radiometric method. Biochem Eng J 33:260–262

    Article  CAS  Google Scholar 

  31. Greenwood NN, Earnshaw A (1989) Chemistry of the elements. Pergamon Press, Oxford. ISBN 0-02-946091-3

    Google Scholar 

  32. Verweij W (2005) ‘CHEAQS PRO’: a program for calculating chemical equilibria in aquatic systems. http://home.tiscali.nl/cheaqs/. Accessed 09 July 2017

  33. Vlek PLG, Lindsay WL (1977) Thermodynamic stability and solubility of molybdenum minerals in soils. Soil Sci Soc Am J 41:42–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Kangkana Sarkar) gratefully acknowledges the University Grants Commission (UGC) for providing necessary Fellowship. This Work is a part of SINP-DAE 12 Five Years Plan Project Trace and Ultratrace Analysis and Isotope Production (TULIP). Susanta Lahiri was supported by Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, K., Sarkar, K. & Lahiri, S. Production, separation and embedment of no-carrier added 93mMo in iron-doped calcium alginate beads from 7Li irradiated yttrium target. J Radioanal Nucl Chem 314, 451–456 (2017). https://doi.org/10.1007/s10967-017-5423-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5423-7

Keywords

Navigation