Skip to main content
Log in

Radiometric analysis of isotherms and thermodynamic parameters for cadmium(II) adsorption from aqueous medium by calcium alginate beads

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Studies on the extraction behavior and immobilization of cadmium by greener reagents have important bearings in today’s science. No-carrier-added (NCA), 109Cd radionuclide is a potential candidate towards radiopharmaceutical studies for both in vivo and in vitro applications and is also used in industrial and environmental studies. Herein, we have studied the adsorption and desorption characteristics of cadmium in both NCA and bulk concentrations into calcium alginate using radiochemical method. Various isotherms like Langmuir, Freundlich, Temkin and Dubinin–Radushkevich have been studied and compared to match the adsorption phenomenon. A spontaneous endothermic physisorption process is expected from thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vis RD, Bos AJJ, Idzenga S, Verheul H (1979) Perturbed γ-γ angular correlations of 111mCd bound on DNA. Nucl Inst Meth 163:265–267

    Article  CAS  Google Scholar 

  2. Das SK, Guin R, Banerjee D, Johnston K, Das P, Butz T, Amaral VS, Correia JG, Barbosa MB (2014) Perturbed angular correlation study of the static and dynamic aspects of cadmium and mercury atoms inside and attached to a C60 fullerene cage. Z Naturforsch A 69:611–618

    Article  CAS  Google Scholar 

  3. Goetz L, Sabbioni E, Marafante E, Birattari C, Bonardi M (1980) Cyclotron production of 107,109Cd for use in metallobiochemistry of heavy metal pollution. Radiochem Radioanal Lett 45:51

    CAS  Google Scholar 

  4. Lahiri S, Mukhopadhyay B, Nandy M, Das NR (1997) Sequential separation by HDEHP of carrier-free 101,105,106Rh, 103,104,105,106,110,112Ag and 104,105,107,109,111Cd produced in alpha particle activated palladium. J Radioanal Nucl Chem 224:155–158

    Article  CAS  Google Scholar 

  5. Long X, Peng X, Fuqing H, Mantian L (1991) Production of cadmium-107 and cadmium-109 by deuteron bombardment of silver. Int J Appl Radiat Isot 42:1234–1236

    Article  CAS  Google Scholar 

  6. Peng X, Xianguan L, He F, Li M (1992) Excitation function for 107Ag(d,2n)107Cd, 109Ag(d,2n)109Cd and 109Ag(d, p)110mAg reactions. Nucl Instrum Meth B 68:145–148

    Article  Google Scholar 

  7. Aardaneh K, Naidoo C, Steyn GF (2008) Radiochemical separation of 109Cd from a silver target, J Radioanal. Nucl Chem 276:831–834

    Article  CAS  Google Scholar 

  8. Xue Z, Rehkämper M, Schönbächler M, Statham PJ, Coles BJ (2012) A new methodology for precise cadmium isotope analyses of seawater. Anal Bioanal Chem 402:883–893

    Article  CAS  Google Scholar 

  9. Zhu C, Wen H, Zhang Y, Fu S, Fan H, Cloquet C (2016) Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China. Miner Depos. doi:10.1007/s00126-016-0691-7

    Google Scholar 

  10. Krishnamurthy N (2013) Engg. chemistry, 2nd edn. PHI Learning Private Limited, New York, pp 82–83. ISBN 978-81-203-3666-7

    Google Scholar 

  11. Marder L, Bernardes AM, Ferreira JZ (2004) Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Sep Purif Technol 37:247–255

    Article  CAS  Google Scholar 

  12. Scoullos Michael J, Vonkeman Gerrit H, Iain Thornton, Zen Makuch (2001) Mercury, cadmium, lead. Handbook for sustainable heavy metals policy and regulation. Springer, New York. ISBN 978-1-4020-0224-3

    Chapter  Google Scholar 

  13. Bezerraa MA, Maêdaa SMN, Oliveiraa EP, Carvalhoc MD, Santellia RE (2007) Internal standardization for the determination of cadmium, cobalt, chromium and manganese in saline produced water from petroleum industry by inductively coupled plasma optical emission spectrometry after cloud point extraction, Spect. Acta Part B: At Spectrosc 62:985–991

    Article  Google Scholar 

  14. Adeniyi AA, Afolabi JA (2002) Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis. Environ Int 28:79–82

    Article  CAS  Google Scholar 

  15. Bernard A (2008) Cadmium & its adverse effects on human health. Indian J Med Res 128:557–564

    CAS  Google Scholar 

  16. Agency for Toxic Substances and Disease Registry (ATSDR) (1997) Toxicological profile for cadmium. Draft for public comment. Public Health Service, US Department of Health and Human Services, Atlanta

  17. Calabrese EJ, Kenyon EM (1991) Air toxics and risk assessment. Lewis Publishers, Chelsea

    Google Scholar 

  18. US Department of Health and Human Services. Hazardous Substances Data Bank (HSDB, online database). (1993) National toxicology information program, National Library of Medicine, Bethesda

  19. Maiti M, Ghosh K, Lahiri S (2015) Green methods for the radiochemical separations of no-carrier added 61Cu, 62Zn from 7Li irradiated cobalt target. J Radioanal Nucl Chem 303:2033–2040

    CAS  Google Scholar 

  20. Fuks L, Oszczak A, Gniazdowska E, Sternik D (2015) Calcium alginate and chitosan as potential sorbents for strontium radionuclide. J Radioanal Nucl Chem 304:15–20

    Article  CAS  Google Scholar 

  21. Fadl FIAE (2014) Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J Radioanal Nucl Chem 301:529–535

    Article  Google Scholar 

  22. Yagnesh L, Patel PS, Atmaram PP (2006) The effect of drug concentration and curing time on processing and properties of calcium alginate beads containing metronidazole by response surface methodology. AAPS PharmSciTech 7(4):E1–E7

    Article  Google Scholar 

  23. Maiti M, Lahiri S, Tomar BS (2011) Separation of no-carrier-added 107,109Cd from proton induced silver target: classical chemistry still relevant. J Radioanal Nucl Chem 288:115–119

    Article  CAS  Google Scholar 

  24. Ghosh K, Maiti M, Lahiri S, Afzal Hussain (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925–930

    Article  CAS  Google Scholar 

  25. Maiti M, Ghosh K, Lahiri S (2013) Simultaneous production and separation of no-carrier-added 111In, 109Cd from alpha particle induced silver target. J Radioanal Nucl Chem 295:1945–1950

    Article  CAS  Google Scholar 

  26. Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165–173

    Article  CAS  Google Scholar 

  27. Sarkar K, Sen K (2015) On the design of Ag-morinnanocomposite to modify calcium alginate gel: framing out a novel sodium ion trap. RSC Adv. 5:57223–57230

    Article  CAS  Google Scholar 

  28. Mondal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115–118

    Article  Google Scholar 

  29. Sharma YC, Srivastava V, Upadhyay SN, Weng CH (2008) Alumina nanoparticles for the removal of Ni(II) from aqueous solutions. Ind Eng Chem Res 47:8095–8100

    Article  CAS  Google Scholar 

  30. Vermeulan TH, Vermeulan KR, Hall LC (1966) Fundamental. Ind Eng Chem 5:212–223

    Google Scholar 

  31. Dada AO, Olalekan AP, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR-JAC 3:38–45

    Google Scholar 

  32. Hutson ND, Yang RT (2000) Adsorption. J Colloid Interf Sci p 189

  33. Mohan S, Karthikeyan J (1997) Removal of lignin and tannin color from aqueous solution by adsorption on to activated carbon solution by adsorption on to activated charcoal. Environ Pollut 97:183–187

    Article  CAS  Google Scholar 

  34. Goldberg S (2005) “Equations and models describing adsorption processes in soils”. Soil Science Society of America, 677 S. Segoe Road, Madison, WI 53711, USA. Chemical processes in soils. SSSA book series, no. 8

  35. Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Phys chim. URSS 12:217–225

    Google Scholar 

  36. Khan TA, Chaudhry SA, Ali I (2015) Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq 202:165–175

    Article  CAS  Google Scholar 

  37. Hutson ND, Yang RT (1997) Theoretical basis for the Dubinin–Radushkevitch (D–R) adsorption isotherm equation. Adsorption 3:189–195

    Article  CAS  Google Scholar 

  38. Dawodu FA, Akpomie GK, Ogbu IC (2012) Isotherm modeling on the equilibrium sorption of cadmium(II) from solution by Agbani clay. Int. J. Multidiscp. Sc. Eng. 3:9–14

    Google Scholar 

  39. Villanueva RAC, Vázquez ARH, de Jesús Cortés Penagos C, Martínez RC (2014) Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci World J. doi:10.1155/2014/647512

    Google Scholar 

  40. Bayramoglu G, Arica MY (2011) Preparation of a composite biosorbent using Scenedesmusquadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(II) and Cd(II) ions: isotherms kinetics, and thermodynamic studies. Water Air Soil Pollut 221:391–403

    Article  CAS  Google Scholar 

  41. Verweij W (2005) ‘CHEAQS PRO’: a program for calculating chemical equilibria in aquatic systems’. http://home.tiscali.nl/cheaqs/. Accessed 25 Oct 2016

  42. Wanga F, Lua X, Lia XY (2016) Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from waste water by gelation with alginate for effective metal recovery. J Hazard Mater 308:75–83

    Article  Google Scholar 

  43. Vijayaraghavan K, Jegan JR, Palanivelu K, Velan M (2005) Nickel recovery from aqueous solution using crab shell particles”. Adsorpt Sci Technol 23:303–311

    Article  CAS  Google Scholar 

  44. Kadirvelu K, Namasivayan C (2003) Utilization of various agricultural waste for activated carbon preparation and application for the removal of dyes and metal ions from aqueous. Bioresour Technol 87:129–132

    Article  CAS  Google Scholar 

  45. Chowdhury ZZ, Zain SM, Khan RA, Khalid K (2011) Linear regression analysis for kinetics and isotherm studies of sorption of manganese(II) ions onto activated palm ash from waste water. Orient J Chem 27:405–415

    CAS  Google Scholar 

  46. Bayramoglu G, Arica MY (2009) Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca alginate for biosorption of Cu(II), Zn(II) and Ni(II): kinetics and equilibrium studies. Bioresour Technol 100:186–193

    Article  CAS  Google Scholar 

  47. Zhang F, Jin Q, Chan SW (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95:4319–4325

    Article  CAS  Google Scholar 

  48. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminariadigitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224:293–306

    Article  CAS  Google Scholar 

  49. Niţã I, Iorgulescu M, Spiroiu MF, Ghiurea M, Petcu C, Cintezã O (2007) The adsorption of heavy metal ions on porous calcium alginate microparticles. Analele Universităţii din Bucuresti—Chimie, Anul XVI (serienouă) 1:59–67

  50. Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonasreinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  Google Scholar 

  51. Ozdemir G, Ceyhan N, Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonasluteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresour Technol 96:1677–1682

    Article  CAS  Google Scholar 

  52. Cataldo S, Cavallaro G, Gianguzza A, Lazzara G, Pettignano A, Piazzese D, Villaescusa I (2013) Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads. J Environ Chem Eng 1:1252–1260

    Article  CAS  Google Scholar 

  53. Jain M, Garg VK, Kadirvelu K (2013) Cadmium(II) sorption and desorption in a fixed bed column using sunflower waste carbon calcium–alginate beads. Bioresour Technol 129:242–248

    Article  CAS  Google Scholar 

  54. Basso MC, Cerrella EG, Cukierman AL (2002) Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions. Ind Eng Chem Res 41:180–189

    Article  CAS  Google Scholar 

  55. Debnath S, Nandi D, Ghosh UC (2011) Adsorption–desorption behavior of cadmium(II) and copper(II) on the surface of nanoparticle agglomerates of hydrous titanium(IV) oxide. J Chem Eng Data 56:3021–3028

    Article  CAS  Google Scholar 

  56. Luo X, Guo B, Wang L, Deng F, Qi R, Luo S, Au C (2014) Synthesis of magnetic ion imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water. Colloids Surf A 462:186–193

    Article  CAS  Google Scholar 

  57. Repo E, Warchol JK, Bhatnagar A, Sillanpa M (2011) Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J Colloid Interface Sci 358:261–267

    Article  CAS  Google Scholar 

  58. Khan TA, Singh VV, Ali I (2009) Sorption of Cd(II), Pb(II) and Cr(VI) metal ions from wastewater using bottom fly ash as a low cost sorbent. J Environ Prot Sci 3:124–132

    Google Scholar 

  59. Khan TA, Singh VV (2010) Removal of cadmium(II), lead(II), and Chromium(VI) ions from aqueous solution using clay. Toxicol Environ Chem 92:1435–1446

    Article  CAS  Google Scholar 

Download references

Acknowledgement

One of the authors gratefully acknowledges the University Grants Commission (UGC) for providing necessary fellowship. This work is a part of SINP-DAE 12 Five years plan project Trace and Ultratrace Analysis and Isotope Production (TULIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, K., Sen, K. & Lahiri, S. Radiometric analysis of isotherms and thermodynamic parameters for cadmium(II) adsorption from aqueous medium by calcium alginate beads. J Radioanal Nucl Chem 312, 343–354 (2017). https://doi.org/10.1007/s10967-017-5213-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5213-2

Keywords

Navigation