Skip to main content
Log in

Ion beam analysis of elemental signatures in uranium dioxide samples: importance for nuclear forensics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper the suitability of two non-destructive analytical techniques for identification of elemental signatures in samples containing uranium of different enrichments was studied. The measurements were based on particle induced X-ray emission (PIXE) and particle induced gamma-ray emission (PIGE) methods. The samples were irradiated by 3 and 5 MeV protons at the 3 MV Tandetron™ of Horia Hulubei National Institute for Physics and Nuclear Engineering. The characteristic X and gamma rays were measured using high purity germanium (HPGe) detectors. The GUPIX software was applied for processing the PIXE spectra, while a relative standardization was applied for PIGE analysis by using certified comparator standards and proton stopping powers calculated by SRIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Portela C (2003) The role of the EU in the non-proliferation of nuclear weapons: the way to Thessaloniki and beyond. PRIF Reports No 65. ISBN:3-933293-83-9. http://www.hsfk.de

  2. Redermeier A (2009) Fingerprinting of nuclear material for nuclear forensics. Esarda Bull 43:71–76

    Google Scholar 

  3. Grant PM, Moody KJ, Hutcheon ID et al (1998) Nuclear forensics in law enforcement applications. J Radioanal Nucl Chem 235:129–132. doi:10.1007/BF02385950

    Article  CAS  Google Scholar 

  4. Moody KJ, Grant PM, Hutcheon ID (2005) Nuclear Forensic Analysis. CRC Press, Boca Raton eBook ISBN:978-0-203-50780-3. ISBN 978-0-8493-1513-8

    Book  Google Scholar 

  5. IAEA TECDOC No 1730 (2014) Application of nuclear forensics in combating illicit trafficking of nuclear and other radioactive material

  6. Aggarwal SK (2016) Nuclear forensics: what, why and how? Curr Sci 110(5):782–791

    CAS  Google Scholar 

  7. Wallenius M, Mayer K, Ray I (2006) Nuclear forensic investigations: two case studies. Forensic Sci Int 156:55–62

    Article  CAS  Google Scholar 

  8. Svedkauskaite-Le Gore J (2008) Development and validation of a method for origin determination of uranium-bearing material. PhD thesis, Vilnius University, University of Physics, Lithuania, JRC Technical Notes, Institute for Transuranium Elements, JRC-ITU-TN-2008/25, Karlsruhe, Germany

  9. Pajo L, Schubert A, Aldave L, Koch L, Bibilashvili YK, Dolgov YN, Chorokhov NA (2001) Identification of unknown nuclear fuel by impurities and physical parameters. J Radioanal Nucl Chem 250(1):79–84

    Article  CAS  Google Scholar 

  10. Bürger S, Riciputi LR, Bostick DA (2007) Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J Radioanal Nucl Chem 274:491–505. doi:10.1007/s10967-006-6930-0

    Article  Google Scholar 

  11. Quemet A, Brennetot R, Chevalier E, Prian E, Laridon AL, Mariet C, Fichet P, Laszak I, Goutelard F (2012) Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution. Talanta 99:207–212

    Article  CAS  Google Scholar 

  12. Oliveira Junior OP, Sarkis JES (2002) Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method. J Radioanal Nucl Chem 254(3):519–526

    Article  CAS  Google Scholar 

  13. De Souza AL et al (2013) An overview of spectrometric techniques in uranium nuclear fuel grade. Microchem J 106:194–201

    Article  Google Scholar 

  14. Kelkar A, Prakash A, Afzal M, Panakkal JP, Kamath HS (2011) Simultaneous determination of alkali, alkaline earth and transition metal elements in uranium and thorium based nuclear fuel materials by single column ion chromatography. J Radioanal Nucl Chem 287(2):595–601

    Article  CAS  Google Scholar 

  15. Natarajan V, Dhawale BA, Rajeswari B, Hon NS, Thulasidas SK, Porwal NK, Godbole SV, Manchanda VK (2008) Determination of metallic impurities in U3O8 using energy dispersive X-ray fluorescence spectrometry. Spectrochim Acta B 63:817–819

    Article  Google Scholar 

  16. Rosenberg RJ, Zilliacus R (1993) Determination of impurities in nuclear fuel element components by neutron activation analysis. J Radioanal Nucl Chem, Articles 169(1):113–124

    Article  CAS  Google Scholar 

  17. Erasmus CS, Sellschop JPF, Alfassi ZB (1986) Limits of detection for impurities in uranium-rich matrices by ion-induced nuclear analysis. Nucl Instrum Methods Phys Res B 15:569–572

    Article  Google Scholar 

  18. Ontalba Salamanca MÁ, Gómez-Tubío B, Ortega-Feliu I, Respaldiza MÁ, Luisa de la Bandera M, Ovejero Zappino G, Bouzas A, Gómez-Morón A (2006) External-beam PIXE spectrometry for the study of Punic jewellery (SW Spain): the geographical provenance of the palladium-bearing gold. Nucl Instrum Methods Phys Res B 249(1–2):622–627. doi:10.1016/j.nimb.2006.03.172

    Article  CAS  Google Scholar 

  19. Carmona N, Ortega-Feliu I, Gómez-Tubío B, Villegas MA (2010) Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterization of glasses. Mater Charact 61:257–267

    Article  CAS  Google Scholar 

  20. Burducea I, Straticiuc M, Ghita DG, Mosu DV, Calinescu CI, Podaru NC, Mous DJW, Ursu I, Zamfir NV (2015) A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania. Nucl Instrum Methods B 359:12–19

    Article  CAS  Google Scholar 

  21. Ziegler JF, Biersack JP (2013) SRIM-2013 The stopping and range of ions in matter. http://srim.org/SRIM/SRIMLEGL.htm

  22. Gomez S, Garcia A, Landete-Castillejos T, Gallego L, Pantelica D, Pantelica A, Preoteasa EA, Scafes A, Straticiuc M (2016) Potential of the Bucharest 3 MV Tandetron™ for IBA studies of deer antler mineralization. Nucl Instrum Methods B 371:413–418

    Article  CAS  Google Scholar 

  23. Tesmer JR, Nastasi M (1995) Handbook of modern ion beam materials analysis. Materials Research Society, Pittsburg

    Google Scholar 

  24. Pantelica D et al (2016) Characterization of hydrogenated and deuterated silicon carbide films codeposited by magnetron sputtering. Nucl Instrum Methods B 371:322–326. doi:10.1016/j.nimb.2015.10.060

    Article  CAS  Google Scholar 

  25. Respaldiza MA, Ager FJ, Carmona A, Ferrer J, García-León M, García-López J, García-Orellana I, Gómez-Tubío B, Morilla Y, Ontalba MA, Ortega-Feliu I (2008) Accelerator-based research activities at “Centro Nacional de Aceleradores”, Seville (Spain). Nucl Instrum Methods B 266(10):2105–2109

    Article  CAS  Google Scholar 

  26. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA (2010) The Guelph PIXE software package IV. Nucl Instrum Methods B 268:3356–3363

    Article  CAS  Google Scholar 

  27. Apostol AI, Pantelica A, Sima O, Fugaru V (2016) Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry. Nucl Instrum Methods B 383:103–108

    Article  CAS  Google Scholar 

  28. GammaW Software, W. Westmeier, Ebsdorfergrund-Mölln (2007) version 18.3

  29. Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instrum Methods B 9(3):344–351. doi:10.1016/0168-583X(85)90762-1

    Article  Google Scholar 

  30. Doolittle LR (1986) A semiautomatic algorithm for rutherford backscattering analysis. Nucl Instrum Methods B 15(1–6):227–231. doi:10.1016/0168-583X(86)90291-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Apostol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostol, A.I., Pantelica, A., Ortega-Feliu, I. et al. Ion beam analysis of elemental signatures in uranium dioxide samples: importance for nuclear forensics. J Radioanal Nucl Chem 311, 1339–1346 (2017). https://doi.org/10.1007/s10967-016-5136-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5136-3

Keywords

Navigation