Skip to main content
Log in

Low-level gamma-ray spectrometry for the determination of 210Pb

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A well High purity germanium (HPGe) gamma spectrometer with NaI(Tl) Compton anticoincidence shield recently installed at DTU Nutech and specially designed for low-level measurements was used for the 210Pb determination in environmental samples. The system is compared to standard stand-alone HPGe spectrometers. The choice between high efficiency well and planar detectors as well as optimum sample size depending on available sample quantity are discussed. Results show that the only comparative advantage of the well anticoincidence system is when just small sample sizes are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The lead was bought from the Swedish mining company Boliden, in early 1990s with certified 210Pb content of less than 35 Bq/kg.

References

  1. Currie LA (1968) Limits for qualitative detection and quantitative determination application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  2. Gilmore GR (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  3. Gehrke RJ, Davidson JR (2005) Acquisition of quality g-ray spectra with HPGe spectrometers. Appl Radiat Isot 62:479–499

    Article  CAS  Google Scholar 

  4. Theodórsson P (1996) Measurement of weak radioactivity. World Scientific, Singapore

    Book  Google Scholar 

  5. Gastrich H, Gößling C, Klingenberg R et al (2016) The dortmund low background facility—low-background gamma ray spectrometry with an artificial overburden. Appl Radiat Isot 112:165–176

    Article  CAS  Google Scholar 

  6. Hu Q, Ma H, He J et al (2016) Design of cosmic veto shielding for HPGe-detector spectrometer. Appl Radiat Isot 109:474–478

    Article  CAS  Google Scholar 

  7. Hofmann M, Mannel T, Sivers MV (2013) Low-background gamma-ray spectrometry in the Garching underground laboratory. AIP Conf Proc 1549:38–41

    Article  CAS  Google Scholar 

  8. Burnett JL, Davies AV (2014) Cosmic veto gamma-spectrometry for comprehensive nuclear-test-ban treaty samples. Nucl Inst Methods Phys Res A 747:37–40

    Article  CAS  Google Scholar 

  9. Burnett JL, Davies AV, McLarty JL (2013) Further development of a cosmic veto gamma-spectrometer. J Radioanal Nucl Chem 298:987–992

    Article  CAS  Google Scholar 

  10. Theodorsson P, Heusser G (1991) External guard counters for low-level counting systems. Nucl Inst Methods Phys Res B 53:97–100

    Article  Google Scholar 

  11. Heusser G (1991) Studies of y-ray background with a low level germanium spectrometer. Nucl Inst Methods Phys Res B 58:79–84

    Article  Google Scholar 

  12. Povinec PP (2008) Low-level gamma-ray spectrometry for environmental samples. J Radioanal Nucl Chem 276:771–777

    Article  CAS  Google Scholar 

  13. Britton R (2012) Compton suppression systems for environmental radiological analysis. J Radioanal Nucl Chem 292:33–39

    Article  CAS  Google Scholar 

  14. Savva MI, Karfopoulos KL, Karangelos DJ et al (2014) Installation and performance testing of an XtRa—NaI (Tl) compton suppression system at the NED-NTUA. Appl Radiat Isot 87:361–364

    Article  CAS  Google Scholar 

  15. Murray AS, Aitken MJ (1988) Analysis of low-level natural radioactivity in small mineral samples for use in thermoluminescence dating, using high-resolution gamma spectrometry. Appl Radiat Isot 39:145–158

    Article  CAS  Google Scholar 

  16. Burnett JL, Davies AV (2013) Compton suppressed gamma-spectrometry for comprehensive nuclear-test-ban treaty samples. J Radioanal Nucl Chem 295:497–499

    Article  CAS  Google Scholar 

  17. El-Daoushy F, Garcia-Tenorio R (1995) Well Ge and semi-planar Ge (HP) detectors for low-level gamma-spectrometry. Nucl Instrum Methods Phys Res A 356:376–384

    Article  CAS  Google Scholar 

  18. Długosz-Lisiecka M (2016) Comparison of two spectrometric counting modes for fast analysis of selected radionuclides activity. J Radioanal Nucl Chem 309:941–945

    Google Scholar 

  19. Grigorescu EL, De Felice P, Razdolescu A-C, Luca A (2004) Low-level gamma spectrometry using beta coincidence and Compton suppression. Appl Radiat Isot 61:191–195

    Article  CAS  Google Scholar 

  20. Mabit L, Benmansour M, Abril JM et al (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth Sci Rev 138:335–351

    Article  CAS  Google Scholar 

  21. Ivanovich M, Harmon RS (1992) Uranium-series disequilibrium applications to earth, marine, and environmental sciences, 2nd edn. Clarendon press, Oxford

    Google Scholar 

  22. Appleby PG, Nolan PJ, Oldfield F et al (1988) 210Pb dating of lake sediments and ombrotrophic peats by gamma essay. Sci Total Environ 69:157–177

    Article  CAS  Google Scholar 

  23. Britton R, Burnett JL, Davies AV, Regan PH (2015) Coincidence corrections for a multi-detector gamma spectrometer. Nucl Inst Methods Phys Res A 769:20–25

    Article  CAS  Google Scholar 

  24. Leo WR (1994) Techniques for nuclear and particle physics experiments, 2nd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  25. Canberra (2013) Genie™ 2000 spectroscopy software customization tools

  26. Cutshall NH, Larsen IL, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl Instrum Methods Phys Res 206:309–312

    Article  CAS  Google Scholar 

  27. Canberra (2016) Application Note The SAGe Well: A new revolution in well and environmental counting. http://www.canberra.com/products/detectors/germanium-detectors.asp

  28. Britton R, Davies AV (2015) Characterisation of a SAGe well detector using GEANT4 and LabSOCS. Nucl Inst Methods Phys Res A 786:12–16

    Article  CAS  Google Scholar 

  29. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Marković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marković, N., Roos, P. & Nielsen, S.P. Low-level gamma-ray spectrometry for the determination of 210Pb. J Radioanal Nucl Chem 311, 1473–1478 (2017). https://doi.org/10.1007/s10967-016-5091-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5091-z

Keywords

Navigation