Skip to main content
Log in

Redox behavior of gas phase Pu(IV)-monodentate ligand complexes: an investigation by electrospray ionization mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study reports the gas phase complexation behavior of Pu(IV) with N,N-dialkylamide ligands and tributylphosphate by electrospray ionization mass spectrometry. In-source collision induced dissociation (CID) and ion trap collision induced dissociation were used to investigate the kinetic stability of Pu species in the gas phase. With both class of ligands, N,N-dialkylamide and trialkylphosphate, oxidation of Pu from the tetravalent state to the hexavalent state was observed at both high skimmer voltages and during ion trap CID. The results suggest that oxidation is due to the presence of a nitrate group in the coordination sphere of the metal and is independent of the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schulz WW, Navratil JD (1984) Science and technology of tributyl phosphate: synthesis, properties, reactions, and analysis. CRC Press, Boca Raton

    Google Scholar 

  2. Morss LR, Edelstein NM, Fuger J (2010) The chemistry of the actinide and transactinide elements, vol. 1–6. Springer, Dordrecht

  3. Musikas C (1987) Solvent-extraction for the chemical separations of the 5f elements. Inorg Chim Acta 140:197–206

    Article  CAS  Google Scholar 

  4. Condamines N, Musikas C (1992) The extraction by n, n-dialkylamides.2. Extraction of actinide cations. Solv Extr Ion Exchange 10:69–100

    Article  CAS  Google Scholar 

  5. Mathur JN, Ruikar PB, Krishna MVB, Murali MS, Nagar MS, Iyer RH (1996) Extraction of Np(IV), Np(VI), Pu(IV) and U(VI) with amides, BEHSO and CMPO from nitric acid medium. Radiochim Acta 73:199–206

    Article  CAS  Google Scholar 

  6. Gupta KK, Manchanda VK, Subramanian MS, Singh RK (2000) N, N-Dihexyl hexanamide: a promising extractant for nuclear fuel reprocessing. Sep Sci Technol 35:1603–1617

    Article  CAS  Google Scholar 

  7. Nair GM, Prabhu DR, Mahajan GR (1994) Extraction of uranium(VI) and plutonium(IV) with dihexylbutyramide and dihexylisobutyramide from nitric-acid medium. J Radioanal Nucl Chem Articles 182:393–399

    Article  CAS  Google Scholar 

  8. Prabhu DR, Mahajan GR, Nair GM, Subramanian MS (1993) Extraction of uranium(VI) and plutonium(IV) with unsymmetrical monoamides. Radiochim Acta 60:109–113

    Article  CAS  Google Scholar 

  9. Musikas C (1988) Potentiality of nonorganophosphorus extractants in chemical separations of actinides. Sep Sci Technol 23:1211–1226

    Article  CAS  Google Scholar 

  10. Siddall TH (1960) Effects of structure of n, n-disubstituted amides on their extraction of actinide and zirconium nitrates and of nitric acid. J Phys Chem 64:1863–1866

    Article  CAS  Google Scholar 

  11. Gasparini GM, Grossi G (1986) Long-chain disubstituted aliphatic amides as extracting agents in industrial applications of solvent-extraction. Solv Extr Ion Exchange 4:1233–1271

    Article  CAS  Google Scholar 

  12. Nair GM, Mahajan GR, Prabhu DR (1995) Extraction of uranium(VI) and plutonium(IV) with some high-molecular-weight aliphatic monoamides from nitric-acid medium. J Radioanal Nucl Chem Articles 191:323–330

    Article  CAS  Google Scholar 

  13. Prabhu DR, Mahajan GR, Nair GM (1997) Di(2-ethyl hexyl)butyramide and di(2-ethyl hexyl)isobutyramide as extractants for uranium(VI) and plutonium(IV). J Radioanal Nucl Chem 224:113–117

    Article  CAS  Google Scholar 

  14. Nair GM, Mahajan GR, Prabhu DR (1996) Dioctyl butyramide and dioctyl isobutyramide as extractants for uranium(VI) and plutonium(IV). J Radioanal Nucl Chem Articles 204:103–111

    Article  CAS  Google Scholar 

  15. Gupta KK, Manchanda VK, Subramanian MS, Singh RK (1999) Thermodynamics of extraction of uranium(VI) and plutonium(IV) with some long-chain aliphatic amides. Radiochim Acta 85:103–106

    Article  CAS  Google Scholar 

  16. Gupta KK, Manchanda VK, Subramanian MS, Singh RK (2000) Solvent extraction studies on U(VI), Pu(IV), and fission products using N, N-dihexyloctanamide. Solvent Extr Ion Exchange 18:273–292

    Article  CAS  Google Scholar 

  17. Berthon C, Chachaty C (1995) Nmr and ir spectrometric studies of monoamide complexes with plutonium(IV) and lanthanide(III) nitrates. Solv Extr Ion Exchange 13:781–812

    Article  CAS  Google Scholar 

  18. Ruikar PB, Nagar MS (1995) Synthesis and characterization of some new monoamide and diamide complexes of plutonium(IV) and dioxouranium(VI) nitrates. Polyhedron 14:3125–3132

    Article  CAS  Google Scholar 

  19. Ruikar PB, Nagar MS, Pai SA, Subramanian MS (1991) Extraction of uranium(VI) and plutonium(IV) with some aliphatic amides. J Radioanal Nucl Chem Articles 150:473–481

    Article  CAS  Google Scholar 

  20. Yamashita M, Fenn JB (1984) Electrospray ion-source—another variation on the free-jet theme. J Phys Chem 88:4451–4459

    Article  CAS  Google Scholar 

  21. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  Google Scholar 

  22. Banerjee S, Mazumdar S (2012) Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem

  23. Griffiths WJ, Jonsson AP, Liu SY, Rai DK, Wang YQ (2001) Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355:545–561

    Article  CAS  Google Scholar 

  24. Colton R, Dagostino A, Traeger JC (1995) Electrospray mass spectrometry applied inorganic and organometallic chemistry. Mass Spectrom Rev 14:79–106

    Article  CAS  Google Scholar 

  25. Di Marco VB, Bombi GG (2006) Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. Mass Spectrom Rev 25:347–379

    Article  Google Scholar 

  26. Daniel JM, Friess SD, Rajagopalan S, Wendt S, Zenobi R (2002) Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int J Mass Spectrom 216:1–27

    Article  CAS  Google Scholar 

  27. Loo JA (2000) Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int J Mass Spectrom 200:175–186

    Article  CAS  Google Scholar 

  28. Keith-Roach MJ (2010) A review of recent trends in electrospray ionisation–mass spectrometry for the analysis of metal–organic ligand complexes. Anal Chim Acta 678:140–148

    Article  CAS  Google Scholar 

  29. McDonald LW, Campbell JA, Clark SB (2014) Failure of ESI spectra to represent metal-complex solution composition: a study of lanthanide-carboxylate complexes. Anal Chem 86:1023–1029

    Article  CAS  Google Scholar 

  30. Retegan T, Berthon L, Ekberg C, Fermvik A, Skarnemark G, Zorz N (2009) Electrospray Ionization Mass Spectrometry Investigation of BTBP—Lanthanide(III) and Actinide(III) Complexes. Solv Extr Ion Exchange 27:663–682

    Article  CAS  Google Scholar 

  31. Berthon L, Zorz N, Gannaz B, Lagrave S, Retegan T, Fermvik A, Ekberg C (2010) Use of electrospray ionization mass spectrometry for the characterization of actinide complexes in solution. IOP Conference Series: Material Science and Engineering, 9, 012059/012051-012059/012058

  32. Audras M, Berthon L, Martin N, Zorz N, Moisy P (2015) Investigation of actinides(III)-DOTA complexes by electrospray ionization mass spectrometry. J Radioanal Nucl Chem 303:1897–1909

    CAS  Google Scholar 

  33. Lucena AF, Lourenco C, Michelini MC, Rutkowski PX, Carretas JM, Zorz N, Berthon L, Dias A, Conceicao Oliveira M, Gibson JK, Marcalo J (2015) Synthesis and hydrolysis of gas-phase lanthanide and actinide oxide nitrate complexes: a correspondence to trivalent metal ion redox potentials and ionization energies. Phys Chem Chem Phys 17:9942–9950

    Article  CAS  Google Scholar 

  34. Agnes GR, Horlick G (1992) Electrospray mass spectrometry as a technique for elemental analysis: preliminary results. Appl Spectrosc 46:401–406

    Article  CAS  Google Scholar 

  35. Moulin C, Amekraz B, Hubert S, Moulin V (2001) Study of thorium hydrolysis species by electrospray-ionization mass spectrometry. Anal Chim Acta 441:269–279

    Article  CAS  Google Scholar 

  36. Walther C, Fuss M, Buechner S, Geckeis H (2009) Stability of Th(IV) polymers measured by electrospray mass spectrometry and laser-induced breakdown detection. J Radioanal Nucl Chem 282:1003–1008

    Article  CAS  Google Scholar 

  37. Walther C, Fuss M, Buechner S (2008) Formation and hydrolysis of polynuclear Th(IV) complexes—a nano-electrospray mass-spectrometry study. Radiochim Acta 96:411–425

    Article  CAS  Google Scholar 

  38. Keith-Roach MJ, Buratti MV, Worsfold PJ (2005) Thorium complexation by hydroxamate siderophores in perturbed multicomponent systems using flow injection electrospray ionization mass spectrometry. Anal Chem 77:7335–7341

    Article  CAS  Google Scholar 

  39. Cartwright AJ, May CC, Worsfold PJ, Keith-Roach MJ (2007) Characterisation of thorium-ethylenediaminetetraacetic acid and thorium-nitrilotriacetic acid species by electrospray ionisation-mass spectrometry. Anal Chim Acta 590:125–131

    Article  CAS  Google Scholar 

  40. Reinoso-Maset E, Worsfold PJ, Keith-Roach MJ (2012) Evaluation of electrospray ionisation mass spectrometry as a technique for the investigation of competitive interactions: a case study of the ternary Th-Mn-EDTA system. Rapid Commun Mass Spectrom 26:2755–2762

    Article  CAS  Google Scholar 

  41. Gong Y, Hu H-S, Tian G, Rao L, Li J, Gibson JK (2013) A tetrapositive metal ion in the gas phase: thorium(IV) coordinated by neutral tridentate ligands. Angew Chem Int Ed 52:6885–6888

    Article  CAS  Google Scholar 

  42. Groenewold GS, Van Stipdonk MJ, Gresham GL, Chien W, Bulleigh K, Howard A (2004) Collision-induced dissociation tandem mass spectrometry of desferrioxamine siderophore complexes from electrospray ionization of UO2 2+ , Fe3+ and Ca2+ solutions. J Mass Spectrom 39:752–761

    Article  CAS  Google Scholar 

  43. Francis AJ, Dodge CJ, Gillow JB (2006) Biotransformation of plutonium complexed with citric acid. Radiochim Acta 94:731–737

    Article  CAS  Google Scholar 

  44. Gong Y, Tian GX, Rao LF, Gibson JK (2014) Dissociation of Diglycolamide Complexes of Ln(3+) (Ln = La-Lu) and An(3+) (An = Pu, Am, Cm): redox Chemistry of 4f and 5f Elements in the Gas Phase Parallels Solution Behavior. Inorg Chem 53:12135–12140

    Article  CAS  Google Scholar 

  45. Rios D, Michelini MC, Lucena AF, Marcalo J, Bray TH, Gibson JK (2012) Gas-phase uranyl neptunyl, and plutonyl: hydration and oxidation studied by experiment and theory. Inorg Chem 51:6603–6614

    Article  CAS  Google Scholar 

  46. Rios D, Rutkowski PX, Shuh DK, Bray TH, Gibson JK, Van Stipdonk MJ (2011) Electron transfer dissociation of dipositive uranyl and plutonyl coordination complexes. J Mass Spectrom 46:1247–1254

    Article  CAS  Google Scholar 

  47. Rios D, Rutkowski PX, Van Stipdonk MJ, Gibson JK (2011) Gas-phase coordination complexes of dipositive plutonyl, PuO22+: chemical diversity across the actinyl series. Inorg Chem 50:4781–4790

    Article  CAS  Google Scholar 

  48. Maurice R, Renault E, Gong Y, Rutkowski PX, Gibson JK (2015) Synthesis and structures of plutonyl nitrate complexes: is plutonium heptavalent in PuO3(NO3)(2)(−) ? Inorg Chem 54:2367–2373

    Article  CAS  Google Scholar 

  49. Wei M, He QG, Feng X, Chen J (2012) Physical properties of N. N, N ‘, N ‘-tetramethyl diglycolamide and thermodynamic studies of its complexation with zirconium, lanthanides and actinides, Journal of Radioanalytical and Nuclear Chemistry 293:689–697

    CAS  Google Scholar 

  50. Steppert M, Walther C, Fuss M, Buechner S (2012) On the polymerization of hexavalent uranium. An electrospray mass spectrometry study, Rapid Communications in Mass Spectrometry 26:583–591

    Article  CAS  Google Scholar 

  51. Steppert M, Walther C (2013) Mass spectrometric characterization and quantification of Pu(VI) hydrolysis products. Radiochim Acta 101:307–311

    Article  CAS  Google Scholar 

  52. Gong Y, Hu HS, Rao LF, Li J, Gibson JK (2013) Experimental and theoretical studies on the fragmentation of gas-phase uranyl-neptunyl-, and plutonyl-diglycolamide complexes. J Phys Chem A 117:10544–10550

    Article  CAS  Google Scholar 

  53. Rutkowski PX, Rios D, Gibson JK, Van Stipdonk MJ (2011) Gas-phase coordination complexes of (UO22+)-O-VI, (NpO22+)-O-VI, and (PuO22+)-O-VI with dimethylformamide. J Am Soc Mass Spectrom 22:2042–2048

    Article  CAS  Google Scholar 

  54. Gong Y, Tian G, Rao L, Gibson JK (2014) Tetrapositive plutonium neptunium, uranium, and thorium coordination complexes: chemistry revealed by electron transfer and collision induced dissociation. J Phys Chem A 118:2749–2755

    Article  CAS  Google Scholar 

  55. Murata H, Takao T, Shimonishi Y (1994) Optimization of skimmer voltages of an electrospray ion-source coupled with a magnetic-sector instrument. Rapid Commun Mass Spectrom 8:205–210

    Article  CAS  Google Scholar 

  56. Lyapchenko N, Schroeder G (2005) Energy-resolved in-source collisionally induced dissociation for the evaluation of the relative stability of noncovalent complexes in the gas phase. Rapid Commun Mass Spectrom 19:3517–3522

    Article  CAS  Google Scholar 

  57. Shukla AK, Futrell JH (2000) Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom 35:1069–1090

    Article  CAS  Google Scholar 

  58. Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23

    Article  CAS  Google Scholar 

  59. May I, Taylor RJ, Denniss IS, Wallwork AL (1999) Actinide complexation in the PUREX process. Czech J Phys 49:597–601

    Article  CAS  Google Scholar 

  60. Tkac P, Paulenova A, Vandegrift GF, Krebs JF (2009) Modeling of Pu(IV) Extraction from Acidic nitrate media by tri-N-butyl phosphate. J Chem Eng Data 54:1967–1974

    Article  CAS  Google Scholar 

  61. De Sio S, Sorel C, Bosse E, Moisy P (2013) Contribution of extraction isotherms modeling based on the Mikulin-Sergievskii-Dannus approach to the speciation of plutonium(IV) in TBP 30%/dodecane. Radiochim Acta 101:373–377

    Article  Google Scholar 

  62. Reilly SD, Gaunt AJ, Scott BL, Modolo G, Iqbal M, Verboom W, Sarsfield MJ (2012) Plutonium(IV) complexation by diglycolamide ligands-coordination chemistry insight into TODGA-based actinide separations. Chem Commun 48:9732–9734

    Article  CAS  Google Scholar 

  63. Fawcett WR (2005) Charge distribution effects in the solution chemistry of polyatomic ions. Condens Matter Phys 8:413–424

    Article  Google Scholar 

  64. Franski R, Sobieszczuk K, Gierczyk B (2014) Mass spectrometric decomposition of Mn + (NO3-)(n + 1) (-) anions originating from metal nitrates M(NO3)(n). Int J Mass Spectrom 369:98–104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Berthon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drader, J.A., Martin, N.P., Boubals, N. et al. Redox behavior of gas phase Pu(IV)-monodentate ligand complexes: an investigation by electrospray ionization mass spectrometry. J Radioanal Nucl Chem 310, 441–451 (2016). https://doi.org/10.1007/s10967-016-4799-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4799-0

Keywords

Navigation