Skip to main content
Log in

Sequential Separation and Trace Estimation of Indium(III), Gallium(III), and Thallium(III) in Biological and Standard Samples

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A novel method for extracting and measuring trace amounts of indium, gallium, and thallium using a synthesized [2]rotaxane hydroxamic acid is proposed. The method involves extracting the elements at specific pH levels using chloroform and measuring them using spectrophotometry and inductively couples plasma atomic emission spectrometry (ICP-AES). The extraction mechanism and the factors that influence the extraction process are also discussed. The method is shown to be effective for measuring these elements in a variety of samples, such as alloys, environmental samples, minerals, water, and biological samples. The sensitivity of this method is enhanced 60 times by ICP-AES measurements, which makes it useful for trace determination of In, Ga, and Tl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bailar, J. C., Emeleus, H.J., Nytholm, R., and Trotman-Dickenson, A.P., Comprehensive Inorganic Chemistry, London: Pergamon, 1973.

    Google Scholar 

  2. Gupta, B., Mudhar, N., and Singh, I., Sep. Purif. Technol., 2007, vol. 57, p. 294.

    Article  CAS  Google Scholar 

  3. Khan, K.A., Camillone, N. III, Yarmoff, J.A., and Osgood, R.M., Surf Sci., 2000, vol. 458, p. 53.

    Article  CAS  Google Scholar 

  4. Anjaneyulu, Y., Kavipurapu, C.S., Reddy, M.R.P., and Mouli, P.C., Analysis, 1987, vol. 15, p. 106.

    CAS  Google Scholar 

  5. Gupta, B., Mudhar, N., and Tandon, S.N., Ind. Eng. Chem. Res., 2005, vol. 44, p. 1922.

    Article  CAS  Google Scholar 

  6. Nishihama S, Hirai T., and Komasawa I., Ind. Eng. Chem. Res., 1999, vol. 38, p. 1032.

    Article  CAS  Google Scholar 

  7. Chang, K.L., Liao, W.T., Yu, C.L., Lan, C.C., Chang, W., and Yu, H.S., Toxicol. Appl. Pharmacol., 2003, vol. 193, p. 209.

    Article  CAS  PubMed  Google Scholar 

  8. Kovar, J., Seligman, P., and Gelfand, E.W., Cancer Res., 1990, vol. 50, p. 5727.

    CAS  PubMed  Google Scholar 

  9. Lan, C.H. and Lin, T.S., Ecotoxicol. Environ. Saf., 2005, vol. 61 p. 432.

    Article  CAS  PubMed  Google Scholar 

  10. Denisova, S.A., Lesnov, A.E., and Ostanina, N.N., J. Anal. Chem., 2018, vol. 73, p. 427.

    Article  CAS  Google Scholar 

  11. Raiguel, S., Dehaen, W., and Binnemans, K., Dalton Trans., 2020, vol. 49, p. 3532.

    Article  CAS  PubMed  Google Scholar 

  12. Francisco, J. and Esther, E., Hydrometallurgy, 2019, vol. 189, p. 105104.

    Article  Google Scholar 

  13. Hassanien, M.M., Kenawy, I.M., Menshawy, A.M., and Asmy, A.A., Anal. Sci., 2007, vol. 23, p. 1403.

    Article  CAS  PubMed  Google Scholar 

  14. Kolekar, S.S. and Anuse, M.A., J. Anal. Chem., 2002, vol. 57, p. 1071.

    Article  CAS  Google Scholar 

  15. Alguacil, F.J., Molecules, 2020, vol. 25, p. 5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michał, D., Arkadiusz, P., Grzegorz, B., Mateusz, C., and Katarzyna L.S., Hydrometallurgy, 2021, vol. 202, P. 505605.

    Google Scholar 

  17. Nayak, S. and Nirbala, D., Turk. J. Chem., 2017, vol. 41, p. 892.

    Article  CAS  Google Scholar 

  18. Kazemi, E., Shokoufi, N., and Shemirani, F., J. Anal. Chem., 2011, vol. 66, p. 924.

    Article  CAS  Google Scholar 

  19. Tabatabaee, M., Shishehbore, M.R., Bagheri, H., and Ebrahimifard, Z., Int. J. Environ. Sci. Technol., 2010, vol. 7, p. 801.

    Article  CAS  Google Scholar 

  20. Zürner, P. and Frisch, G., ACS Sustainable Chem. Eng., 2019, vol. 7, p. 5300.

    Article  Google Scholar 

  21. Lei, Z., Yingnan, W., Xingjia, G., Zhu, Y., and Zhongyuan, Z., Hydrometallurgy, 2009, vol. 95, p. 92.

    Article  Google Scholar 

  22. Mai, F., Ikki, T., Hideyuki, K., and Satoshi, K., J. Environ. Anal. Chem., 2021, vol. 101, p. 719.

    Article  Google Scholar 

  23. Saberyan, K., Zolfonoun, E., Shamsipur, M., and Salavati-Niasari, M., Sep. Sci. Technol., 2009, vol. 44, p. 1851.

    Article  CAS  Google Scholar 

  24. Abbasova, G. and Medjidov, A., Lett. Org. Chem., 2022, vol. 19, p. 837.

    Article  CAS  Google Scholar 

  25. Joonhyeok, C., Trilok, N., Rishiram, B., and Jun-Goo, J., Antioxidants (Basel), 2022, vol. 11, p. 280.

    Article  Google Scholar 

  26. Adiguzel, E., Yilmaz, F., Emirik, M., and Özil, M., J. Mol. Struct., 2016, vol. 1127, p. 403.

    Article  Google Scholar 

  27. Agrawal, Y.K. and Sharma, C.R., Indian J. Chem. A., 2007, vol. 46, p. 1772.

    Google Scholar 

  28. Marczenko, Z., Spectrophotometric Determination of Elements, Chichester: Ellis Horwood, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramauly Sharma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Yadvendra Agrawal Sequential Separation and Trace Estimation of Indium(III), Gallium(III), and Thallium(III) in Biological and Standard Samples. J Anal Chem 78, 1525–1536 (2023). https://doi.org/10.1134/S1061934823110084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823110084

Keywords:

Navigation