Skip to main content
Log in

Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Recovery of metallic uranium has been achieved by electrolytic reduction of uranium oxide in a molten LiCl–Li2O electrolyte at 650 °C, followed by the removal of the residual salt by vacuum distillation at 850 °C. Four types of stainless steel mesh baskets, with various mesh sizes (325, 1,400 and 2,300 meshes) and either three or five ply layers, were used both as cathodes and to contain the reduced product in the distillation stage. The recovered uranium had a metal fraction greater than 98.8 % and contained no residual salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Laidler JJ, Battles JE, Miller WE, Ackerman JP, Carls EL (1997) Prog Nucl Energy 31:131–140

    Article  CAS  Google Scholar 

  2. Benedict RW, McFarlane HF (1998) Radwaste Mag 5:23

    Google Scholar 

  3. Iizuka M, Sakamura Y, Inoue T (2008) Nucl Eng Technol 40:183–190

    Article  Google Scholar 

  4. Simpson MF, Herrmann SD (2008) Nucl Technol 162:179–183

    CAS  Google Scholar 

  5. Yoo JH, Seo CS, Kim EH, Lee H (2008) Nucl Eng Technol 40:581–592

    Article  CAS  Google Scholar 

  6. Kitawaki S, Shinozaki T, Fukushima M, Usami T, Yahagi N, Kurata M (2008) Nucl Technol 162:118–123

    CAS  Google Scholar 

  7. Serp J, Konings RJM, Malmbeck R, Rebizant J, Scheppler C, Glatz JP (2004) J Electroanal Chem 561:143–148

    Article  CAS  Google Scholar 

  8. Willit JL, Miller WE, Battles JE (1992) J Nucl Mater 195:229–249

    Article  CAS  Google Scholar 

  9. Jeong SM, Park SB, Hong SS, Seo CS, Park SW (2006) J Radioanal Nucl Chem 268:349–356

    Article  CAS  Google Scholar 

  10. Park SB, Park BH, Jeong SM, Hur JM, Seo CS, Choi SH, Park SW (2006) J Radioanal Nucl Chem 268:489–495

    Article  CAS  Google Scholar 

  11. Goff KM, Wass JC, Marsden KC, Teske GM (2011) Nucl Eng Technol 43:335–342

    Article  CAS  Google Scholar 

  12. Koyama T, Sakamura Y, Ogata T, Kobayashi H (2009) Proc Global 2009 pp 9161 Paris, France

  13. Hur JM, Kim TJ, Choi IK, Do JB, Hong SS, Seo CS (2008) Nucl Technol 162:192–198

    CAS  Google Scholar 

  14. Herrmann SD, Li SX (2010) Nucl Technol 171:247–265

    CAS  Google Scholar 

  15. Sakamura Y, Omori T (2010) Nucl Technol 171:266–275

    CAS  Google Scholar 

  16. Jeong SM, Shin HS, Hong SS, Hur JM, Do JB, Lee HS (2010) Electrochim Acta 55:1749–1755

    Article  CAS  Google Scholar 

  17. Usami T, Kurata M, Inoue T, Sims HE, Beetham SA, Jenkins JA (2002) J Nucl Mater 300:15–26

    Article  CAS  Google Scholar 

  18. Hur JM, Seo CS, Hong SS, Kang DS, Park SW (2003) React Kinet Catal Lett 80:217–222

    Article  CAS  Google Scholar 

  19. Chen GZ, Fray DJ, Farthing TW (2000) Nature 407:361–364

    Article  CAS  Google Scholar 

  20. Sakamura Y, Kurata M, Inoue T (2006) J Electrochem Soc 153:D31–D39

    Article  CAS  Google Scholar 

  21. Sakamura Y, Omori T, Inoue T (2008) Nucl Technol 162:169–178

    CAS  Google Scholar 

  22. Hur JH, Jeong SM, Lee H (2010) Electrochem Commun 12:706–709

    Article  CAS  Google Scholar 

  23. Gourishankar KV, Redey L, Williamson M (2002) In: Schneider WA (ed) Light Metals. The Minerals, Metals and Materials Society, USA (p. 1075)

    Google Scholar 

  24. Redey L, Gourishankar KL (2003) US Patent 6540902

  25. Herrmann SD, Li SX, Simpson MF, Phongikarroon S (2006) Sep Sci Technol 41:1965–1983

    Article  CAS  Google Scholar 

  26. Herrmann SD, Li SX, Serrano-Rodriguez EBE (2009) Proc Global 9059

  27. Choi EY, Kim JK, Im HS, Choi IK, Na SH, Lee JW, Jeong SM, Hur JM (2013) J Nucl Mater 437:178–187

    Article  CAS  Google Scholar 

  28. Kim IS, Oh SC, Im HS, Hur JM, Lee HS (2013) J Radioanal Nucl Chem 296:1413–1417

    Article  Google Scholar 

  29. Chapman LR, Holcombe CE (1984) J Nucl Mater 126:323–326

    Article  CAS  Google Scholar 

  30. Leibowitz L, Blomquist RA (1991) J Nucl Mater 184:47–52

    Article  CAS  Google Scholar 

  31. Huang K, Park Y, Ewh A, Sencer BH, Kennedy JR, Coffey KR, Sohn YH (2012) J Nucl Mater 424:82–88

    Article  CAS  Google Scholar 

  32. Rai AK, Raju S, Vijayalakshmi M (2013) J Nucl Mater 432:520–528

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nuclear Research & Development Program of the National Research Foundation (NRF), in a grant funded by the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, EY., Won, C.Y., Kang, DS. et al. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation. J Radioanal Nucl Chem 304, 535–546 (2015). https://doi.org/10.1007/s10967-014-3842-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3842-2

Keywords

Navigation