Skip to main content
Log in

Speciation of uranium in solids using time resolved photoluminescence technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive study regarding the speciation of uranium in five different solids, namely, YBO3, Sr2P2O7, SrB4O7, SrBPO5 and SrZrO3 is presented using time resolved photoluminescence spectroscopy. The ‘Sr’ based hosts are considered as potential phosphor materials where as the borate based matrices are known to have near tissue equivalent absorption coefficients making them potential candidates for dosimetric applications. It was observed that, in case of the pyrophosphate, borophosphate and yttrium borate matrices, uranium gets stabilized as uranyl (\( {\text{UO}}_{2}^{2 + } \)), whereas, in case of the tetraborate and zirconate matrices, it was the uranate species, \( {\text{UO}}_{6}^{6 - } \) that gets stabilized preferentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aoki T (2012) Photoluminescence spectroscopy; optical imaging and spectroscopy, characterization of materials. Wiley, NY, pp 1–12

    Google Scholar 

  2. Lakowicz JR (2006) Principles of fluorescence spectroscopy, vol XXVI, 3rd edn. Springer, NY

    Book  Google Scholar 

  3. Cotton SA (1991) Lanthanides and Actinides. Macmillan, London

    Google Scholar 

  4. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinides, 2nd edn. Chapman & Hall, London

    Google Scholar 

  5. Blasse G, Bleijenberg KC, Krol DM (1979) J Lumin 18(19):57–62

    Article  Google Scholar 

  6. Tanner PA (1995) J Mol Struct 355:299–302

    Article  CAS  Google Scholar 

  7. Hashem E, Swinburne AN, Schulzke C, Evans RC, Platts JA, Kerridge A, Natrajan LS, Baker RJ (2013) RSC Advances 3:4350–4361

    Article  CAS  Google Scholar 

  8. Blasse G, van den Heuvel GPM, van Hesteren JJA (1977) J Solid State Chem 21:99–103

    Article  CAS  Google Scholar 

  9. Blasse G, Grambier BC (1994) Luminescent materials. Springer, NY

    Book  Google Scholar 

  10. Stokes GG (1852) Philos Trans R Soc London 142:463–562

    Article  Google Scholar 

  11. Becquerel E (1896) Compt Rend Hebd Seances Acad Sci 122:420–430

    CAS  Google Scholar 

  12. Nielsen PE (1992) J Am Chem Soc 114:4967–4975

    Article  CAS  Google Scholar 

  13. Gupta SK, Pathak N, Gupta R, Thulasidas SK, Natarajan V (2014) J Mol Struct 1068:204–209

    Article  CAS  Google Scholar 

  14. Hair JTWD, Blasse G (1976) J Lumin 14:307–323

    Article  Google Scholar 

  15. ‘t Lam RUE, Blasse G (1980) J Chem Phys 72:1803–1808

    Article  Google Scholar 

  16. Hou YN, Xing YH, Bai FY, Guan QL, Wang X, Zhang R, Shi Z (2014) Spectrochim Acta A 123:267–272

    Article  CAS  Google Scholar 

  17. Xu MJ, Wang LX, Jia DZ, Liu L, Zhang L, Guo ZP, Sheng R (2013) J Am Ceram Soc 96:1198–1202

    Article  CAS  Google Scholar 

  18. Hsu CH, Jagannathan R, Lu CH (2010) Mater Sci Engg B 167:137–141

    Article  CAS  Google Scholar 

  19. Taikar DR, Joshi CP, Moharil SV, Muthal PL, Dhopte SM (2010) J Lumin 130:1690–1693

    Article  CAS  Google Scholar 

  20. Purohit PJ, Mohapatra M, Natarajan V, Godbole SV (2011) J Mater Sci 46:2030–2035

    Article  CAS  Google Scholar 

  21. Ren M, Lin JH, Dong Y, Yang LQ, Su MZ, You LP (1999) Chem Mater 11:1576–1580

    Article  CAS  Google Scholar 

  22. Anitha M, Mohapatra M, Kadam RM, Seshagiri TK, Tyagi AK, Natarajan V (2006) J Mater Res 21:1117–1123

    Article  CAS  Google Scholar 

  23. Mohapatra M, Kumar M, Natarajan V, Godbole SV (2014) Radiat Phys Chem 103:31–36

    Article  CAS  Google Scholar 

  24. Mohapatra M, Rajeswari B, Kadam RM, Kumar M, Seshagiri TK, Porwal NK, Godbole SV, Natarajan V (2014) J Alloys Compd 611:74–81

    Article  CAS  Google Scholar 

  25. Mohapatra M, Yadav AK, Jha SN, Bhattacharyya D, Godbole SV, Natarajan V (2014) Chem Phys Lett 601:81–86

    Article  CAS  Google Scholar 

  26. Gupta SK, Mohapatra M, Natarajan V, Godbole SV (2013) Int J Appl Ceram Technol 10:593–602

    Article  CAS  Google Scholar 

  27. Seshagiri TK, Mohapatra M, Gundu Rao TK, Kadam RM, Natarajan V, Godbole SV (2009) J Phys Chem Solids 70:1261–1266

    Article  CAS  Google Scholar 

  28. Chadeyron G, El-Ghozzi M, Mahiou R, Arbus A, Cousseins JC (1997) J Solid State Chem 128:261–266

    Article  CAS  Google Scholar 

  29. Hagman L, Jansson I, Magneli C (1968) Acta Chim Scand 22:1419–1429

    Article  CAS  Google Scholar 

  30. Atuchin VV, Kesler VG, Zaitsev AI, Molokeev MS, Aleksandrovsky AS, Kuzubov AA, Ignatova NY (2013) J Phys: Condens Matter 25:085503

    CAS  Google Scholar 

  31. Tanner PA, Wu PZ, Jun L, Yulong L, Qiang S (1997) J Phys Chem Solids 58:1143–1146

    Article  CAS  Google Scholar 

  32. Bleijenberg KC (1980) Struct Bond 42:97–128

    Article  CAS  Google Scholar 

  33. Van Roosmalen JAM, Van Vlaanderen P, Cordfunke EHP (1992) J Solid State Chem 101:59–65

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the contributions of Dr. T. K. Seshagiri, Dr. (Mrs.) M. J. Kulkarni, Dr. Mithlesh Kumar, Dr. N. K. Porwal, Dr. S. V. Godbole and Shri S. K. Gupta to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, M., Natarajan, V. Speciation of uranium in solids using time resolved photoluminescence technique. J Radioanal Nucl Chem 302, 1327–1332 (2014). https://doi.org/10.1007/s10967-014-3532-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3532-0

Keywords

Navigation