Skip to main content
Log in

Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin–Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choppin GR (1999) Utility of oxidation state analogs in the study of plutonium behavior. Radiochim Acta 5(3):89–96

    Google Scholar 

  2. Hora ZD (1998b) Sedimentary kaolin. Geological fieldwork 1997, British Columbia Ministry of Employment and Investment, paper 1998-1: 24D-1-24D-3

  3. Katsumata H, Kaneco S, Inomata K, Itoh K, Funasaka K, Masuyama K, Suzuki T, Ohta K (2003) Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. J Environ Manage 69(2):187–191

    Article  Google Scholar 

  4. Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144(1–2):386–395

    Article  CAS  Google Scholar 

  5. Gu X, Evans LJ (2008) Surface complexation modelling of Cd (II), Cu (II), Ni (II), Pb(II) and Zn (II) adsorption onto kaolinite. Geochim Cosmochim Ac 72(2):267–276

    Article  CAS  Google Scholar 

  6. Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb(II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manage 87(1):46–58

    Article  CAS  Google Scholar 

  7. Adebowale KO, Unuabonah EI, Olu-Owolabi BI (2006) The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mater 134(1):130–139

    Article  CAS  Google Scholar 

  8. Sari A, Tuzen M, Citak D, Soylak M (2007) Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J Hazard Mater 149(2):283–291

    Article  CAS  Google Scholar 

  9. Adebowale KO, Unuabonah EI, Olu-Owolabi BI (2008) Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chem Eng J 136(2):99–107

    Article  CAS  Google Scholar 

  10. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  11. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59(1):171–177

    Article  Google Scholar 

  12. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689

    Article  CAS  Google Scholar 

  13. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52

    Article  CAS  Google Scholar 

  14. Ho Y, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safe Environ Prot Trans Inst Chem Eng Part B 76(4):332–340

    Article  CAS  Google Scholar 

  15. Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50(4):517–528

    Article  Google Scholar 

  16. Basha S, Murthy Z, Jha B (2009) Sorption of Hg(II) onto Carica papaya: experimental studies and design of batch sorber. Chem Eng J 147(2):226–234

    Article  CAS  Google Scholar 

  17. Zolgharnein J, Shahmoradi A (2010) Adsorption of Cr(VI) onto Elaeagnus Tree Leaves: statistical optimization, equilibrium modeling, and kinetic studies. J Chem Eng Data 55(9):3428–3437

    Article  CAS  Google Scholar 

  18. Wu FC, Tseng RL, Juang RS (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35(3):613–618

    Article  CAS  Google Scholar 

  19. Nuhoglu Y, Oguz E (2003) Removal of copper (II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process Biochem 38(11):1627–1631

    Article  CAS  Google Scholar 

  20. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  21. Sawalha MF et al (2006) Biosorption of Cd (II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interface Sci 300(1):100–104

    Article  CAS  Google Scholar 

  22. Freundlich H (1906) Adsorption in solutions. Phys Chemie 57:384

    Google Scholar 

  23. Dubinin M (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60(2):235–241

    Article  CAS  Google Scholar 

  24. Malik UR, Hasany SM, Subhani MS (2005) Sorptive potential of sunflower stem for Cr(III) ions from aqueous solutions and its kinetic and thermodynamic profile. Talanta 66(1):166–173

    Article  CAS  Google Scholar 

  25. Özcan A, Öncü E, Özcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids Surf A 277:90–97

    Article  Google Scholar 

  26. Bartell F, Thomas TL, Fu Y (1951) Thermodynamics of adsorption from solutions. IV. Temperature dependence of adsorption. J Phys Chem 55(9):1456–1462

    Article  CAS  Google Scholar 

  27. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  28. Özcan A, Özcan AS, Gok O (2007) Adsorption kinetics and isotherms of anionic dye of reactive blue 19 from aqueous solutions onto DTMA-sepiolite. In: Lewinsky AA (ed) Hazardous materials and wastewater—treatment, removal and analysis. Nova Science Publishers, New York

    Google Scholar 

  29. Cheung CW, Porter JF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35(3):605–612

    Article  CAS  Google Scholar 

  30. Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1):1–8

    CAS  Google Scholar 

  31. Sarı A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(2):349–355

    Article  Google Scholar 

  32. Ho Y, Porter J, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141(1):1–33

    Article  CAS  Google Scholar 

  33. Taha MR, Ahmad K, Aziz AA, Chik Z (2009) Geoenvironmental aspects of tropical residual soils. In: Huat BBK, Sew GS, Ali FH (eds) Tropical residual soils engineering. A.A. Balkema Publishers, London, pp 377–403

    Google Scholar 

  34. Seliman F, Lasheen YF, Youssief MAE, Abo-Aly MM, Shehata FA (2014) Removal of some radionuclides from contaminated solution using natural clay: bentonite. J Radioanal Nucl Chem 300(3):969–979

    Article  CAS  Google Scholar 

  35. Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Res 35(5):1125–1134

    Article  CAS  Google Scholar 

  36. Manohar D, Anoop Krishnan K, Anirudhan T (2002) Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res 36(6):1609–1619

    Article  CAS  Google Scholar 

  37. Atkins PW (1995) Physical chemistry, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  38. Tan X et al (2008) Sorption of Ni2+ on Na-rectorite studied by batch and spectroscopy methods. Appl Geochem 23(9):2767–2777

    Article  CAS  Google Scholar 

  39. Fan Q et al (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni (II) to Na-attapulgite. Chem Eng J 150(1):188–195

    Article  CAS  Google Scholar 

  40. Ünlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280

    Article  Google Scholar 

Download references

Acknowledgments

National Natural Science Foundation of China (No. 21101083, J1030962) and Foundation research Funds for Central University [lzujbky-2010-30, lzujbky-2013-191] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Niu, Z., Liu, Z. et al. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin. J Radioanal Nucl Chem 303, 87–97 (2015). https://doi.org/10.1007/s10967-014-3324-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3324-6

Keywords

Navigation