Skip to main content
Log in

Oxygen isotopes of fuel pellets from the fifth collaborative materials exercise and uranium oxides reference materials determined by continuous flow laser fluorination mass spectrometry for nuclear forensic applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium oxides are essential materials in the production process of nuclear fuel for civilian or military applications. As such, identifying their geological origin, manufacturing process and age, plays a central role in the field of nuclear forensic. This study aims to expand the traditional characterization analytical techniques by measuring the oxygen isotopic composition of various uranium oxides (e.g., UO2, U3O8), uranium ore concentrates (UOC). We apply it to UO2 pellets from the Fifth Collaborative Materials Exercise (CMX-5). We developed an accurate laser fluorination in line with continuous-flow mass spectrometry analytical method for measuring oxygen isotopes in sub-milligram nuclear materials, including raw materials and selected materials from several stages of the fuel production cycle. We report for the first time, on the oxygen isotope composition of the two UO2 fuel pellets, used for the international CMX-5. We show that δ18O of these pellets differ by 1.7‰, which probably originates from their manufacturing processes. CUP-2, a UOC, was used to demonstrate the challenge of measuring isotope composition of hydrated forms of uranium oxides. U3O8 was found to exhibit lower than expected, by stoichiometric formula, oxygen contents. That might originate from oxygen loss during the pre-fluorination process, or indicates the presence of more than one phase within this particular U3O8 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Determination of the age of highly enriched uranium. Anal Bioanal Chem 374(3):379–384. https://doi.org/10.1007/s00216-002-1555-9

    Article  CAS  PubMed  Google Scholar 

  2. Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionization mass spectrometry. Fresenius’ J Anal Chem 366(3):234–238. https://doi.org/10.1007/s002160050046

    Article  CAS  Google Scholar 

  3. Wallenius M, Tamborini G, Koch L (2001) The age of plutonium particles. Radiochim Acta 89:55–58

    Article  CAS  Google Scholar 

  4. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900. https://doi.org/10.1021/cr300273f

    Article  CAS  PubMed  Google Scholar 

  5. Keegan E, Kristo MJ, Toole K, Kips R, Young E (2016) Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. Anal Chem 88:1496–1505. https://doi.org/10.1021/acs.analchem.5b02915

  6. Moody KJ, Grant PM, Hutcheon ID (2014) Nuclear forensic analysis: Second edition. https://doi.org/10.1201/b17863

    Article  Google Scholar 

  7. Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal Chem 81:8327–8334. https://doi.org/10.1021/ac901100e

    Article  CAS  PubMed  Google Scholar 

  8. Krajkó J, Varga Z, Yalcintas E, Wallenius M, Mayer K (2014) Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. Talanta 129:499–504. https://doi.org/10.1016/j.talanta.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  9. Varga Z, Katona R, Stefánka Z, Wallenius M, Mayer K, Nicholla A (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80:744–1749. https://doi.org/10.1016/j.talanta.2009.10.018

    Article  CAS  Google Scholar 

  10. Incident and trafficking database, The International Atomic Energy Agency. https://www.iaea.org/resources/databases/itdb

  11. Asai S, Limbeck A (2015) LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate. Talanta 135:41–49. https://doi.org/10.1016/j.talanta.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  12. Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G (2012) Attribution of uranium ore concentrates using elemental and anionic data. Appl Geochem 27:1600–1609. https://doi.org/10.1016/j.apgeochem.2012.05.009

    Article  CAS  Google Scholar 

  13. Meier-Augenstein W (2010) Stable isotope forensics

    Book  Google Scholar 

  14. Pajo L, Mayer K, Koch L (2001) Investigation of the oxygen isotopic composition in oxidic uranium compounds as a new property in nuclear forensic science. Fresenius J Anal Chem 371:348–352. https://doi.org/10.1007/s002160100983

    Article  CAS  PubMed  Google Scholar 

  15. Tamborini G, Phinney D, Bildstein O, Betti M (2002) Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: a nuclear forensic diagnostic. Anal Chem 74:6098–6101. https://doi.org/10.1021/ac0259515

    Article  CAS  PubMed  Google Scholar 

  16. Tamborini G, Wallenius M, Bildstein O, Pajo L, Betti M (2002) Development of a SIMS method for isotopic measurements in Nuclear Forensic application. Micrichim Acta 139:185–188. https://doi.org/10.1007/s006040200059

    Article  CAS  Google Scholar 

  17. Carter J, Barwick V (2011) Good practice guide for isotope ratio mass spectrometry

    Google Scholar 

  18. Eiler JM, Cloga M, Magyar P, Piasecki A, Sessions A, Stolper D, Deerberg M, Schlueter H-J, Schwieters J (2013) A high-resolution gas-source isotope ratio mass spectrometer. Int J Mass Spectrom 335:45–56. https://doi.org/10.1016/j.ijms.2012.10.014

    Article  CAS  Google Scholar 

  19. Matthews A et al (2007) Oxygen isotope thermometers for metamorphic rocks. J Metamorph Geol 12:211–219. https://doi.org/10.1111/j.1525-1314.1994.tb00017.x

    Article  Google Scholar 

  20. Clayton RN (1991) Oxygen isotopic thermometer calibrations. The Geochemical Society, Special Publication No.3

  21. Galili N et al (2019) The geologic history of seawater oxygen isotopes from marine iron oxides. Science 365:469–473. https://doi.org/10.1126/science.aaw9247

    Article  CAS  PubMed  Google Scholar 

  22. Bruand E, Storey C, Fowler M, Heilimo E (2019) Oxygen isotopes in titanite and apatite and their potential for crustal evolution research. Geochim Cosmochim Acta 255:144–162. https://doi.org/10.1016/j.gca.2019.04.002

    Article  CAS  Google Scholar 

  23. Fayek M, Horita J, Ripley EM (2011) The oxygen isotopic composition of uranium minerals: a review. Ore Geol Rev 41:1–21. https://doi.org/10.1016/j.oregeorev.2011.06.005

    Article  Google Scholar 

  24. Fayek M, Kyser TK (2000) Low-temperature oxygen isotopic fractionation in the uraninite–UO3–CO2–H2O system. Geochim Cosmochim Acta 64:2185–2197. https://doi.org/10.1016/S0016-7037(99)00393-2

    Article  CAS  Google Scholar 

  25. Dierick M (2017) The use of oxygen isotopes to characterize the origins and transformations of uranium oxides during the fuel cycle. PhD thesis

  26. Alexandre A, Basile-Doelsch I, Sonzogni C, Sylvestre F, Parron C, Meunier J-D, Colin F (2006) Oxygen isotope analyses of fine silica grains using laser-extraction technique: comparison with oxygen isotope data obtained from ion microprobe analyses and application to quartzite and silcrete cement investigation. Geochim Cosmochim Acta 70:2827–2835. https://doi.org/10.1016/j.gca.2006.03.003

    Article  CAS  Google Scholar 

  27. Crespin J, Alexandre A, Sylvestre F, Sonzogni C, Paille C, Garreta V (2008) IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples. Anal Chem 80:2372–2378. https://doi.org/10.1021/ac071475c

    Article  CAS  PubMed  Google Scholar 

  28. Taylor F, Higginson M, Marsden O, Schwantes JM (2019) State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 5th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG). J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06950-7

  29. Garner EL et al (1971) Uranium isotopic standard reference material. Natl Bur Stand Spec Publ 260:27

  30. CANMET Report 88-3E (1988) CUP-2: a certified uranium ore concentrate

  31. Hut G (1987) Stable isotope reference samples for geochemical and hydrological investigations (Rep. Consultants Group Meeting, Vienna, 1985). International Atomic Energy Agency, pp 1–42

  32. Jovanovic SV, Weber PK, Pidduck AJ et al (2020) Uncovering uranium isotopic heterogeneity of fuel pellets from the fifth collaborative materials exercise of The Nuclear Forensics International Technical Working Group. J Radioanal Nucl Chem 326:1853–1866. https://doi.org/10.1007/s10967-020-07470-5

    Article  CAS  Google Scholar 

  33. IAEA Safeguards Glossary (2001) International nuclear verification series. No. 3, IAEA, Vienna, Austria

  34. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements, vol 1, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  35. Oerter EJ et al (2020) Hydrogen and oxygen stable isotope composition of water in metaschoepite mineralization on U3O8. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2019.104469

Download references

Acknowledgements

This work was supported by a Grant (ID197-2020) from the PAZY foundation to Prof. Aldo Shemesh (WIS) and Dr. Eyal Elish (NRCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maor Assulin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assulin, M., Yam, R., Brandis, M. et al. Oxygen isotopes of fuel pellets from the fifth collaborative materials exercise and uranium oxides reference materials determined by continuous flow laser fluorination mass spectrometry for nuclear forensic applications. J Radioanal Nucl Chem 329, 757–768 (2021). https://doi.org/10.1007/s10967-021-07858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07858-x

Keywords

Navigation