Skip to main content
Log in

Removal of fluoride ions from aqueous solutions on unmodified and iron-modified hydrogels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Unmodified and iron-modified hydrogels were synthesized from polyvinyl alcohol and polyvinylpyrrolidone; these materials were used for the adsorption of fluoride ions from an aqueous solution. The structural and morphological characteristics of the unmodified (HG) and modified (HG-Fe) hydrogels were determined by means of hydration percentage, point of zero charge (PZC), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dispersive energy spectroscopy (EDS). The parameters considered in the adsorption processes were contact time, pH, fluoride concentration and dosage. The kinetic data were obtained at an initial pH of 6.7 and were best fitted to the Elovich model (R2 = 0.994); the adsorption capacity was higher for HG-Fe than HG. The data obtained at pH 5 were adjusted to the Lagergren equation indicating physical adsorption. The capacities of both materials (HG and HG-Fe) were similar, and the equilibrium time was shorter for HG than HG-Fe. The isotherms were best fitted to the Langmuir model, indicating homogeneous materials. The maximum adsorption capacities were similar for both adsorbents (HG-Fe and HG), and the thermodynamic parameters showed that the processes are exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Perumal S, Atchudan R, Edison T, Suresh R, Karpagavinayagam P, Vedhi C (2021) Short review on recent advances of hydrogel-based adsorbents for heavy metal ions. Metals 11(6):864. https://doi.org/10.3390/met11060864

    Article  CAS  Google Scholar 

  2. Akhtar M, Hanif M, Ranjha N (2015) Methods of synthesis of hydrogels. A review. Saudi Pharma J 24. https://doi.org/10.1016/j.jsps.2015.03.022

  3. Ding QL, Wu ZX, Tao K, Wei YM, Wang WY, Yang BR, Xie X, Wu J (2022) Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater Horiz 9. https://doi.org/10.1039/d1mh01871j

  4. Rivera-Hernández G, Antunes-Ricardo M, Martínez-Morales P, Sánchez ML (2021) Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int J Pharm 600:120478. https://doi.org/10.1016/j.ijpharm.2021.120478

    Article  CAS  PubMed  Google Scholar 

  5. Meireles D, Boggione IJ, Menezes de Souza S, Santos RC (2021) Preparation of polyvinyl alcohol hydrogel containing bacteriophage and its evaluation for potential use in the healing of skin wounds. J Drug Delivery Sci Technol 63. https://doi.org/10.1016/j.jddst.2021.102484

  6. Zulfiqar M, Lee SY, Mafize AA, Mastura NA, Johari K, Ekmi N (2020) Efficient removal of Pb(II) from aqueous solutions by using oil palm bio-waste/MWCNTs reinforced pva hydrogel composites: kinetic, isotherm and thermodynamic modeling. Polymers 12(2). https://doi.org/10.3390/polym12020430

  7. Aljar M, Rashdan S, Abd A (2021) Environmentally friendly polyvinyl alcohol – alginate/bentonite nanocomposite hydrogel beads as efficient adsorbents for removal of toxic Methylene Blue from Aqueous Solution. Polymers 13(22):4000. https://doi.org/10.3390/polym13224000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Todros S, Barbon S, Stocco E, Favaron M, Macchi V, De Caro R, Porzionato A, Pavan PG (2022) Time-dependent mechanical behavior of partially oxidized polyvinyl alcohol hydrogels for tissue engineering. J Mech Behav Biomed Mater 125:104966. https://doi.org/10.1016/j.jmbbm.2021.104966

    Article  CAS  PubMed  Google Scholar 

  9. Kumar A, Han SS (2017) PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater 66:159. https://doi.org/10.1080/00914037.2016.1190930

    Article  CAS  Google Scholar 

  10. Musgrave CS, Fang F (2019) Contact lens materials: a materials science perspective. Materials 12(2):261. https://doi.org/10.3390/ma12020261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kharaghani D, Dutta D, Gitigard P, Tamada Y, Katagiri A, Phan DN, Willcox MD, Kim IS (2019) Development of antibacterial contact lenses containing metallic nanoparticles. Polym Test 79. https://doi.org/10.1016/j.polymertesting.2019.106034

  12. Xin M, Li J, Ma Z, Pan L, Shi Y (2020) MXenes and their applications in wearable sensors. Front Chem 8:297. https://doi.org/10.3389/fchem.2020.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bae J, Park J, Kim S, Cho H, Kim HJ, Park S, Shin DS (2020) Tailored hydrogels for biosensor applications. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2020.05.001

    Article  Google Scholar 

  14. Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A (2020) Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B. https://doi.org/10.1039/d0tb01842b

    Article  PubMed  Google Scholar 

  15. Fard HN, Pour GB, Sarvi MN (2019) PVA-based supercapacitors. Ionics 25:2951. https://doi.org/10.1007/s11581-019-03048-8

    Article  CAS  Google Scholar 

  16. Warkar SG, Kumar A (2019) Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 182:121823. https://doi.org/10.1016/j.polymer.2019.121823

    Article  CAS  Google Scholar 

  17. Sumer T, Bakar A, Niaz M, Amir A, Bakar A, Al-Amiery AA (2015) Review properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20. https://doi.org/10.3390/molecules201219884

  18. Baker MI, Walsh SP, Schwartz Z, Boyan B (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B 100. https://doi.org/10.1002/jbm.b.32694

  19. Teodorescu M, Bercea M (2015) Poly(vinylpyrrolidone) - a versatile polymer for Biomedical and Beyond Medical Applications. Polym Plast Technol Eng 54:923. https://doi.org/10.1080/03602559.2014.979506

    Article  CAS  Google Scholar 

  20. Park KR, Nho YC (2004) Preparation and characterization by radiation of hydrogels of PVA and PVP containing Aloe vera. J Appl Polym Sci 91(3):1612. https://doi.org/10.1002/app.13299

    Article  CAS  Google Scholar 

  21. Husain MS, Gupta A, Alashwal BY, Sharma S (2018) Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sources Part A 40. https://doi.org/10.1080/15567036.2018.1495786

  22. Cassu SN, Felisberti MI (1997) Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blends: miscibility, microheterogeneity and free volume change. Polymer 38:3907. https://doi.org/10.1016/s0032-3861(96)00959-7

    Article  CAS  Google Scholar 

  23. Morariu S, Bercea M, Teodorescu M, Avadanei M (2016) Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications. Eur Polym J 84. https://doi.org/10.1016/j.eurpolymj.2016.09.033

  24. Rahaman MS, Hasnine SM, Ahmed T, Sultana S, Quaiyum MD, Serajum M, Ullah N, Kumar S, Nazmul M, Sahadat M, Chandra N (2021) Radiation crosslinked polyvinyl alcohol/polyvinyl pyrrolidone/acrylic acid hydrogels: swelling, crosslinking, and dye adsorption study. Iran Polym J 30. https://doi.org/10.1007/s13726-021-00949-2

  25. Tassanapukdee Y, Prayongpan P, Songsrirote K (2021) Removal of heavy metal ions from an aqueous solution by CS/PVA/PVP composite hydrogel synthesized using microwaved-assisted irradiation. Environ Technol Innov 24:101898. https://doi.org/10.1016/j.eti.2021.101898

    Article  CAS  Google Scholar 

  26. Amiri S, Asghari A, Vatanpour V, Rajabi M (2020) Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Sep Purif Technol 250:117216. https://doi.org/10.1016/j.seppur.2020.117216

    Article  CAS  Google Scholar 

  27. D’Amelia R, Mancuso J (2020) The study of polyvinyl pyrrolidone-polyvinyl alcohol copolymers and blends. J Polym Biopolym Phys Chem 8. https://doi.org/10.12691/jpbpc-8-1-1

  28. Ma S, Hou JJ, Yang H, Xu Z (2017) Preparation of renewable porous TiO2/PVA composite sphere as photocatalyst for methyl orange degradation. J Porous Mater 25. https://doi.org/10.1007/s10934-017-0518-7

  29. Mukherjee D, Barghi S, Ray AK (2014) Degradation of methyl orange by TiO2/polymeric film photocatalyst. Can J Chem Eng 92:1661. https://doi.org/10.1002/cjce.22028

    Article  CAS  Google Scholar 

  30. Mallakpour S, Motirasoul F (2018) Ultrasonication synthesis of PVA/PVP/α-MnO2 -stearic acid blend nanocomposites for adsorbing cd II ion. Ultrason Sonochem 40:410. https://doi.org/10.1016/j.ultsonch.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  31. Jabli M, Hamdaoui M, Jabli A, Ghandour Y, Ben B (2014) A comparative study on the performance of dye removal, from aqueous suspension, using (2-hydroxypropyl)-β-cyclodextrin-CS, PVP-PVA-CS, PVA-CS, PVP-CS and plain CS microspheres. J Text Inst 105. https://doi.org/10.1080/00405000.2013.843851

  32. Ahmad S, Singh R, Arfin T, Neeti K (2022) Fluoride contamination, consequences and removal techniques in water: a review. Environ Sci Adv 5. https://doi.org/10.1039/d1va00039j

  33. Sobeih MM, Shahat MF, Osman A, Zaid MA, Nassar MY (2020) Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of Fluoride ions from polluted aqueous solutions. RSC Adv 10. https://doi.org/10.1039/d0ra02340j

  34. Meilani V, Lee JI, Kang JK, Lee CG, Jeong S, Park SJ (2021) Application of aluminum-modified food waste biochar as adsorbent of fluoride in aqueous solutions and optimization of production using response surface methodology. Microporous Mesoporous Mater 312:110764. https://doi.org/10.1016/j.micromeso.2020.110764

    Article  CAS  Google Scholar 

  35. Jeyaseelan A, Naushad M, Ahamad T, Viswanathan N (2021) Design and development of amine functionalized iron-based metal organic frameworks for selective fluoride removal from water environment. J Environ Chem Eng 9:104563. https://doi.org/10.1016/j.jece.2020.104563

    Article  CAS  Google Scholar 

  36. Annan E, Nyankson E, Agyei-Tuffour B, Kofi E, Nkrumah G, Modupeh JA, Oteng-Peprah M (2021) Synthesis and characterization of modified Kaolin-Bentonite composites for enhanced fluoride removal from drinking Water. Adv Mater Sci Eng. https://doi.org/10.1155/2021/6679422

  37. Zhou J, Yu J, Liao H, Zhang Y, Lou X (2020) Facile fabrication of bimetallic collagen fiber particles via immobilizing zirconium on chrome-tanned leather as adsorbent for fluoride removal from ground water near hot spring. Sep Sci Technol. https://doi.org/10.1080/01496395.2019.1574826

    Article  Google Scholar 

  38. Tolkou AK, Manousi N, Zachariadis GA, Deliyanni EA (2021) Recently developed adsorbing materials for fluoride removal from water and fluoride analytical determination techniques: a review. Sustainability 13:7061. https://doi.org/10.3390/su13137061

    Article  CAS  Google Scholar 

  39. Elewa AM, Amer AA, Attallah MF, Gad HA, Mohamed ZA, Ahmed IA (2023) Chemically activated carbon based on biomass for adsorption of Fe(III) and mn(II) ions from aqueous solution. Materials. https://doi.org/10.3390/ma16031251

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gutiérrez M, Alarcon-Herrera MT, Gaytan-Alarcon AP (2023) Arsenic and fluorine in groundwater in northern Mexico: spatial distribution and enrichment factors. Environ Monit Assess 195:212. https://doi.org/10.1007/s10661-022-10818-x

    Article  CAS  Google Scholar 

  41. Abd EM, Ghanem HL (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16. https://doi.org/10.1007/s10965-008-9196-0

  42. Razzak MT, Darwis D, Zainuddin S (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62(1):107. https://doi.org/10.1016/s0969-806x(01)00427-3

    Article  CAS  Google Scholar 

  43. Fabryanty R, Valencia C, Soetaredjo FE, Nyoo J, Permatasari S, Kurniawan A, Ju YH, Ismadaji S (2017) Removal of crystal violet dye by adsorption using bentonite - alginate composite. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.10.057

    Article  Google Scholar 

  44. Zhu F, Guo Z, Hu X (2020) Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe(II) processes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.12278

    Article  PubMed  Google Scholar 

  45. Moghaddama RH, Dadfarnia S, Shabani AMH, Tavakol M (2018) Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium (VI) removal from aqueous samples: equilibrium, kinetics, and thermodynamic studies. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.10.030

    Article  Google Scholar 

  46. Singh S, Basu H, Bassan MKT, Kumar R (2022) Thiol functionalised silica microsphere loaded polymeric hydrogel: development of a novel hybrid sorbent for removal of lead and cadmium. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131659

    Article  PubMed  Google Scholar 

  47. Xu D, Lei F, Chen H, Yin L, Xie J (2019) One-step hydrothermal synthesis and optical properties of self-quenching-resistant carbon dots towards fluorescent ink and as nanosensors for Fe3+ detection. RSC Adv. https://doi.org/10.1039/c8ra10570g

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cao L, Wu X, Wang Q, Wang J (2018) Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: a facile material. J Photochem Photobiol B 178:440. https://doi.org/10.1016/j.jphotobiol.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  49. Moreno-Marcelino JE, Gutierrez-Segura E, Vilchis-Nestor AR, Castro-Longoria E, López-Téllez G (2020) Shape memory hybrid based on polyvinyl alcohol and 0D silver nanoparticles. Polym Test 90:106668. https://doi.org/10.1016/j.polymertesting.2020.106668

    Article  CAS  Google Scholar 

  50. Wu YH, Yu DG, Li HP, Wu XY, Li XY (2017) Medicated structural PVP/PEG composites fabricated using coaxial electrospinning. e-Polymers. https://doi.org/10.1515/epoly-2016-0244

  51. Zidan HM, Abdelrazek EM, Abdelghany AM, Taeabiah AE (2018) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2018.04.023

    Article  Google Scholar 

  52. Daems N, Milis S, Verbeke R, Szymczyk A, Pescarmona P, Vankelecom IFJ (2018) High-performance membranes with full pH-stability. RSC Adv. https://doi.org/10.1039/c7ra13663c

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarip MN, Noor MFH, Ahmad Z, Shuhaime N, Dahan RM, Arshad AN, Ismail WINW (2018) Conductivity study of polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP)-KOH coatings system. https://doi.org/10.1063/1.5066978

  54. Wang B, Zhang Q, Xiong G (2019) Bakelite-type anionic microporous organic polymers with high capacity for selective adsorption of cationic dyes from water. Chem Eng J 36. https://doi.org/10.1016/j.cej.2019.02.089

  55. Bhattacharyya R, Ray SK (2013) Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethyl cellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semiinterpenetrating network hydrogel. Polym Eng Sci. https://doi.org/10.1002/pen.23501

    Article  Google Scholar 

  56. Lee J, Hong S, Lee C, Park S (2021) Fluoride removal by thermally treated eggshells with high adsorption capacity, low cost, and easy acquisition. Environ Sci Pollut Res 28. https://doi.org/10.1007/s11356-021-13284-z

  57. Shanika M, Wimalasiri AK, Dziemidowicz K, Williams G, Dissanayake DP, Nalin de Silva KM, De Silva R (2021) Biopolymer based nanohydroxyapatite composites for the removal of fluoride, lead, cadmium, and arsenic from water. ACS Omega 6. https://doi.org/10.1021/acsomega.1c00316

  58. Everaert M, Bergmans J, Broos K, Hermans B, Michielsen B (2021) Granulation and calcination of alum sludge for the development of a phosphorus adsorbent: from lab scale to pilot scale. J Environ Manage 279:111525. https://doi.org/10.1016/j.jenvman.2020.111525

    Article  CAS  PubMed  Google Scholar 

  59. Huang L, Yang Z, Li X, Hou L, Alhassan S, Wang H (2020) Synthesis of hierarchical hollow MIL-53(Al)-NH2 as an adsorbent for removing fluoride: experimental and theoretical perspective. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10975-x

    Article  Google Scholar 

  60. Sengupta P, Saha S, Banerjee S, Dey A, Sarkar P (2020) Removal of fluoride ion from drinking water by a new Fe(OH)3 / nano CaO impregnated chitosan composite adsorbent. Polym-Plast Technol Mater. https://doi.org/10.1080/25740881.2020.1725567

    Article  Google Scholar 

  61. Aigbe UO, Onyancha RB, Ukhurebor KE, Onyebuchi K (2020) Removal of fluoride ions using a polypyrrole magnetic nanocomposite influenced by a rotating magnetic field. RSC Adv 10. https://doi.org/10.1039/c9ra07379e

  62. Rajkumar S, Murugesh S, Sivasankar V, Chaabane T (2015) Low-cost fluoride adsorbents prepared from a renewable biowaste: syntheses, characterization and modeling studies. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.06.028

    Article  Google Scholar 

  63. Dong S, Wang Y (2016) Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal. Water Res 88:852. https://doi.org/10.1016/j.watres.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  64. Bazrafshan E, Balarak D, Panahi AH, Mahvi A (2016) Fluoride removal from Aqueous solutions by Cupric Oxide nanoparticles. Fluoride 49. https://doi.org/10.13140/RG.2.2.33178.90564

  65. Liu Q, Zhang L, Yang B, Huang R (2015) Removal of fluoride from aqueous solution using zr(IV) immobilized cross-linked chitosan. Int J Biol Macromol 77:15. https://doi.org/10.1016/j.ijbiomac.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  66. Teutli-Sequeira A, Solache-Ríos M, Martínez-Miranda V, Linares-Hernández I (2014) Comparison of aluminum modified natural materials in the removal of fluoride ions. J Colloid Interface Sci 418:254. https://doi.org/10.1016/j.jcis.2013.12.020

    Article  CAS  PubMed  Google Scholar 

  67. Singh KP, Shyam Kumar A, Paniteja M, Singh S (2019) Novel properties of Epipremnum aureum for treatment of fluoride-contaminated water. SN Appl Sci 1(7):741. https://doi.org/10.1007/s42452-019-0773-0

    Article  CAS  Google Scholar 

  68. Tomar V, Surendra P, Kumar D (2013) Adsorptive removal of fluoride from aqueous media using citrus limonum (lemon) leaf. Microchem J. https://doi.org/10.1016/j.microc.2013.09.010

    Article  Google Scholar 

  69. Farah A, Farah N, Talpur AB, Muhammad AS, Muhammad AB (2015) Biosorption of fluoride from aqueous solution by white—rot fungus Pleurotus Eryngii ATCC 90888. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2014.11.003

    Article  Google Scholar 

  70. Sivasankar V, Rajkumar S, Murugesh S, Darchen A (2012) Tamarind (Tamarindus indica) fruit shell carbon: a calcium-rich promisi,ng adsorbent for fluoride removal from groundwater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.05.015

    Article  PubMed  Google Scholar 

  71. Ma Y, Shi F, Zheng X, Ma J, Gao C (2011) Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): batch and column studies. J Hazard Mater 185:1073. https://doi.org/10.1016/j.jhazmat.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  72. Teutli-Sequeira A, Martínez-Miranda V, Solache-Ríos M, Linares-Hernández I (2013) Aluminum and lanthanum effects in natural materials on the adsorption of fluoride ions. J Fluor Chem. https://doi.org/10.1016/j.jfluchem.2013.01.015

    Article  Google Scholar 

  73. Lv L, He J, Wei M, Evans DG, Duan X (2006) Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2005.10.01

    Article  PubMed  Google Scholar 

  74. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  75. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156. https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  76. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm. J Colloid Interface Sci. https://doi.org/10.1016/0021-9797(74)90252-5

    Article  Google Scholar 

  77. Sipos P (2021) Searching for optimum adsorption curve for metal sorption on soils: comparison of various isotherm models fitted by different error functions. SN Appl Sci 3:387. https://doi.org/10.1007/s42452-021-04383-0

    Article  CAS  Google Scholar 

  78. Alaqarbeh M (2021) Adsorption phenomena: definition, mechanisms, and adsorption types: short review. Green and Applied Chemistry. https://doi.org/10.48419/IMIST.PRSM/rhazes-v13.28283

    Article  Google Scholar 

  79. Vieira T, Artifon SES, Cesco CT, Vilela PB, Becegato VA, Paulino AT (2020) Chitosan-based hydrogels for the sorption of metals and dyes in water: isothermal, kinetic, and thermodynamic evaluations. Colloid Polym Sci. https://doi.org/10.1007/s00396-020-04786-2

    Article  Google Scholar 

  80. Eyube ES, Notani PP, Samaila H (2022) Analytical prediction of enthalpy and Gibbs free energy of gaseous molecules. Chem Thermodyn Therm Anal. https://doi.org/10.1016/j.ctta.2022.100060

    Article  Google Scholar 

  81. Ebisike K, Okoronkwo AE, Alaneme KK, Akinribide O (2022) Thermodynamic study of the adsorption of Cd2+ and Ni2+ onto chitosan - silica hybrid aerogel from aqueous solution. Results Chem. https://doi.org/10.1016/j.rechem.2022.100730

    Article  Google Scholar 

  82. Alver E, Metin AÛ, Brouers F (2020) Methylene blue adsorption on magnetic alginate/rice husk bio-composite. Int J Biol Macromol 154:104. https://doi.org/10.1016/j.ijbiomac.2020.02.330

    Article  CAS  PubMed  Google Scholar 

  83. Gu B, Schmitt J, Chen Z, Liang L, McCarthy F (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol. https://doi.org/10.1021/es00050a007

    Article  PubMed  Google Scholar 

  84. Zhang W, Zhou L, Tang H, Li H, Song W, Chen Z (2015) Modeling geochemical factors controlling fluoride concentration in groundwater. Arab J Geosci 8(11):9133. https://doi.org/10.1007/s12517-015-1933-1

    Article  CAS  Google Scholar 

  85. Amro AN, Abhary MK, Shaikh MM, Ali S (2019) Removal of lead and cadmium ions from aqueous solution by adsorption on a low-cost Phragmites biomass. Processes 7:406. https://doi.org/10.3390/pr7070406

    Article  CAS  Google Scholar 

  86. Alghamdi AA, Al-Odayni AB, Saeed WS, Al-Kahtani A, Alharti F, Aouak T (2019) Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated Carbon. Materials. https://doi.org/10.3390/ma12122020

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: V. Rosendo-González and E. Gutiérrez-Segura; data curation: V. Rosendo-González, E. Gutiérrez-Segura, and M. Solache-Rios; investigation: V. Rosendo-González and E. Gutiérrez-Segura; methodology: V. Rosendo-González, E. Gutiérrez-Segura, and M. Solache-Rios; writing—original draft: V. Rosendo-González and M. Solache-Rios; writing—review and editing: M.J.S.R., E. Gutiérrez-Segura and A. Amaya-Chavez.

Corresponding author

Correspondence to E. Gutiérrez-Segura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosendo-González, V., Gutiérrez-Segura, E., Solache-Rios, M. et al. Removal of fluoride ions from aqueous solutions on unmodified and iron-modified hydrogels. J Polym Res 31, 133 (2024). https://doi.org/10.1007/s10965-024-03954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03954-0

Keywords

Navigation