Skip to main content

Advertisement

Log in

Recent trends in the development of Polyhydroxyalkanoates (PHAs) based biocomposites by blending with different bio-based polymers

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Currently, Polyhydroxyalkanoates (PHAs) especially Polyhydroxybutyrate (PHB) have gained much attention as an environmentally benign alternative to petroleum-derived plastics. However, path to a bright future of sustainable production and development has been hampered by their dubious quality. PHAs are biodegradable, biocompatible, and non-toxic which make them excellent choices for packaging, agriculture, and medicine. Despite having such great scope, PHAs have a number of disadvantages, including a high cost, brittleness, thermal instability, and poor mechanical properties. Thus, PHAs need to be upgraded to enhance its inherent qualities. This upgradation can be primarily achieved by blending PHAs either with natural or synthetic bio-based polymers and adding reinforcements to develop novel PHAs-based biocomposites and blends. Keeping the view of future PHAs multi-dimensional applications, the present study provides an extensive understanding of the blending of PHAs to enhance their physico-chemical traits. Additionally, a number of state-of-the-art processing methods are also discussed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from Pakalapati et al. [15])

Fig. 2

(Adapted from Briassoulis et al. [76])

Fig. 3

(Adapted from Briassoulis et al. [62])

Fig. 4

(Adapted from Abu Aldam et al. [93])

Fig. 5

(Adapted from Bacalhau et al. [166]

Fig. 6
Fig. 7

(Adapted from Ketabchi et al. [178])

Fig. 8

(Adapted from Chiulan et al. [183])

Similar content being viewed by others

Data availability

This manuscript and its additional information files contain all of the data generated or analysed during the study.

References

  1. Usurelu CD, Badila S, Frone AN, Panaitescu DM (2022) Poly (3-hydroxybutyrate) nanocomposites with cellulose nanocrystals. Polymers 14:1974. https://doi.org/10.3390/polym14101974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shams M, Alam I, Mahbub MS (2021) Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environ Adv 5:100119. https://doi.org/10.1016/j.envadv.2021.100119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorasan C, Ortega-Ojeda FE, Rodríguez A, Rosal R (2022) Modelling the photodegradation of marine microplastics by means of infrared spectrometry and chemometric techniques. Microplastics 1:198–210. https://doi.org/10.3390/microplastics1010013

    Article  Google Scholar 

  4. Lee CH, Sapuan SM, Ilyas RA, Lee SH, Khalina A (2020) Development and processing of PLA, PHA, and other biopolymers. In Advanced processing, properties, and applications of starch and other bio-based polymers, Elsevier, pp 47–63

  5. Eesaee M, Ghassemi P, Nguyen DD, Thomas S, Elkoun S, Nguyen-Tri P (2022) Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: a review. Biochem Eng J 187:108588. https://doi.org/10.1016/j.bej.2022.108588

    Article  CAS  Google Scholar 

  6. Sharma V, Sehgal R, Gupta R (2021) Polyhydroxyalkanoate (PHA): Properties and modifications. Polymer 212:123161. https://doi.org/10.1016/j.polymer.2020.123161

    Article  CAS  Google Scholar 

  7. García A, Segura D, Espín G, Galindo E, Castillo T, Peña C (2014) High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 82:117–123. https://doi.org/10.1016/j.bej.2013.10.020

    Article  CAS  Google Scholar 

  8. Chen GQ, Hajnal I, Wu H, Lv L, Ye J (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574. https://doi.org/10.1016/j.tibtech.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  9. Ding Z, Kumar V, Sar T, Harirchi S, Dregulo AM, Sirohi R, Sindhu R, Binod P, Liu X, Zhang Z, Taherzadeh MJ, Awasthi MK (2022) Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Bioresour Technol 364:128058. https://doi.org/10.1016/j.biortech.2022.128058

    Article  CAS  PubMed  Google Scholar 

  10. Licciardello G, Catara AF, Catara V (2019) Production of polyhydroxyalkanoates and extracellular products using Pseudomonas corrugata and P. mediterranea: A review. Bioengineering. 6:105. https://doi.org/10.3390/bioengineering6040105

  11. Marchessault RH (1996) Tender Morsels for Bacteria-Recent developments in microbial polyesters. Trends Polym Sci 5:163–168

    Google Scholar 

  12. Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. https://doi.org/10.1016/s0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  13. Luengo JM, Garcı́a B, Sandoval A, Naharro G, Olivera ER, (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260. https://doi.org/10.1016/s1369-5274(03)00040-7

    Article  CAS  PubMed  Google Scholar 

  14. Pradhan S, Dikshit PK, Moholkar VS (2020) Production, characterization, and applications of biodegradable polymer: Polyhydroxyalkanoates. In: Katiyar V, Kumar A, Mulchandani N (Eds.), Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials, Springer, Singapore, pp 51–94. https://doi.org/10.1007/978-981-15-1251-3_4

  15. Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JC (2018) Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng 126:282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  16. Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Odediran ET, Louis H (2020) Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem 96:174–193. https://doi.org/10.1016/j.procbio.2020.05.032

    Article  CAS  Google Scholar 

  17. Saad V, Gutschmann B, Grimm T, Widmer T, Neubauer P, Riedel SL (2021) Low-quality animal by-product streams for the production of PHA-biopolymers: fats, fat/protein-emulsions and materials with high ash content as low-cost feedstocks. Biotechnol Lett 43:579–587. https://doi.org/10.1007/s10529-020-03065-y

    Article  CAS  PubMed  Google Scholar 

  18. Kumar V, Sehgal R, Gupta R (2021) Blends and composites of polyhydroxyalkanoates (PHAs) and their applications. Eur Polym J 161:110824. https://doi.org/10.1016/j.eurpolymj.2021.110824

    Article  CAS  Google Scholar 

  19. Omar S, Rayes A, Eqaab A, Voß I, Steinbüchel A (2001) Optimization of cell growth and poly (3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23:1119–1123. https://doi.org/10.1023/a:1010559800535

    Article  CAS  Google Scholar 

  20. Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41:2289–2296. https://doi.org/10.1016/j.procbio.2006.05.026

    Article  CAS  Google Scholar 

  21. Sindhu R, Silviya N, Binod P, Pandey A (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72. https://doi.org/10.1016/j.bej.2012.12.015

    Article  CAS  Google Scholar 

  22. Cesário MT, Raposo RS, de Almeida MC, van Keulen F, Ferreira BS, da Fonseca MM (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N Biotechnol 31:104–113. https://doi.org/10.1016/j.nbt.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  23. Lopes MS, Gomez JG, Taciro MK, Mendonça TT, Silva LF (2014) Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 41:1353–1363. https://doi.org/10.1007/s10295-014-1485-5

    Article  CAS  PubMed  Google Scholar 

  24. Rao A, Haque S, El-Enshasy HA, Singh V, Mishra BN (2019) RSM–GA based optimization of bacterial PHA production and In Silico modulation of citrate synthase for enhancing PHA production. Biomolecules 9:872. https://doi.org/10.3390/biom9120872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alsafadi D, Ibrahim MI, Alamry KA, Hussein MA, Mansour A (2020) Utilizing the crop waste of date palm fruit to biosynthesize polyhydroxyalkanoate bioplastics with favorable properties. Sci Total Environ 737. https://doi.org/10.1016/j.scitotenv.2020.139716

  26. Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Marqués AM, Manresa A (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions. Biochem Eng J 26:159–167. https://doi.org/10.1016/j.bej.2005.04.022

    Article  CAS  Google Scholar 

  27. Haas R, Jin B, Zepf FT (2008) Production of poly (3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256. https://doi.org/10.1271/bbb.70503

    Article  CAS  PubMed  Google Scholar 

  28. Omar FN, Rahma NAA, Hafid HS, Mumtaz T, Yee PL, Hassan MA (2011) Utilization of kitchen waste for the production of green thermoplastic polyhydroxybutyrate (PHB) by Cupriavidus necator CCGUG 52238. Afr J Microbiol Res 5:2873–2879. https://doi.org/10.5897/ajmr11.156

    Article  CAS  Google Scholar 

  29. Eshtaya MK, Nor ‘Aini AR, Hassan MA, (2013) Bioconversion of restaurant waste into Polyhydroxybutyrate (PHB) by recombinant E. coli through anaerobic digestion. Int J Environ Waste Manag 11:27–37. https://doi.org/10.1504/ijewm.2013.050521

    Article  CAS  Google Scholar 

  30. Sangkharak K, Khaithongkaeo P, Chuaikhunupakarn T, Choonut A, Prasertsan P (2021) The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Convers Biorefin 11:1651–1664. https://doi.org/10.1007/s13399-020-00657-6

    Article  CAS  Google Scholar 

  31. Obruca S, Marova I, Melusova S, Mravcova L (2011) Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann Microbiol 61:947–953. https://doi.org/10.1007/s13213-011-0218-5

    Article  CAS  Google Scholar 

  32. Kumalaningsih S, Hidayat N, Aini N (2011) Optimization of polyhydroxyalkanoates (PHA) production from liquid bean curd waste by Alcaligenes latus bacteria. J Agric Food Technol 1:63–67

    Google Scholar 

  33. Ryu HW, Cho KS, Goodrich PR, Park CH (2008) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: Effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol Bioprocess Eng 13:651–658. https://doi.org/10.1007/s12257-008-0072-x

    Article  CAS  Google Scholar 

  34. Singh G, Kumari A, Mittal A, Yadav A, Aggarwal NK (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. Biomed Res Int 1–10. https://doi.org/10.1155/2013/952641

  35. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater. 1–10. https://doi.org/10.1155/2013/752821

  36. Ben M, Kennes C, Veiga MC (2016) Optimization of polyhydroxyalkanoate storage using mixed cultures and brewery wastewater. J Chem Technol Biotechnol 91:2817–2826. https://doi.org/10.1002/jctb.4891

    Article  CAS  Google Scholar 

  37. Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P (2018) Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate. Environ Technol 39:1430–1441. https://doi.org/10.1080/09593330.2017.1330902

    Article  CAS  PubMed  Google Scholar 

  38. Li M, Wilkins MR (2020) Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Bio Macromol 156:691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082

    Article  CAS  Google Scholar 

  39. Li J, Yang Z, Zhang K, Liu M, Liu D, Yan X, Si M, Shi Y (2021) Valorizing waste liquor from dilute acid pretreatment of lignocellulosic biomass by Bacillus megaterium B-10. Ind Crops Prod 161:113160. https://doi.org/10.1016/j.indcrop.2020.113160

    Article  CAS  Google Scholar 

  40. Reddy MV, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC (2017) Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. Bioresour technol 234:99–105. https://doi.org/10.1016/j.biortech.2017.03.008

    Article  CAS  Google Scholar 

  41. Poirier, Y (2001) Production of polyesters in transgenic plants. Biopolyesters 209–240. https://doi.org/10.1007/3-540-40021-4_7

  42. Dobrogojski J, Spychalski M, Luciński R, Borek S (2018) Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiol Plant 40:1–7. https://doi.org/10.1007/s11738-018-2742-4

    Article  CAS  Google Scholar 

  43. Khan AK, Anjum I, Hano C, Abbasi BH, Anjum S (2021) An overview on feasible production of bioplastic polyhydroxyalkanoate (PHA) in transgenic plants. Bioplastics for Sustainable Development 555–79. https://doi.org/10.1007/978-981-16-1823-9_20

  44. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523. https://doi.org/10.1126/science.256.5056.52

    Article  CAS  PubMed  Google Scholar 

  45. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci 91:12760–12764. https://doi.org/10.1073/pnas.91.26.12760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874. https://doi.org/10.1271/bbb.63.870

    Article  CAS  PubMed  Google Scholar 

  47. Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M (1999) Poly (β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550. https://doi.org/10.1007/s004250050760

    Article  CAS  PubMed  Google Scholar 

  48. John ME (1997) Cotton crop improvement through genetic engineering. Crit Rev Biotechnol 17:185–208. https://doi.org/10.3109/07388559709146613

    Article  CAS  Google Scholar 

  49. Saruul P, Srienc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer, poly-β-hydroxybutyrate, in transgenic alfalfa. Crop Sci 42:919–927. https://doi.org/10.2135/cropsci2002.9190

    Article  CAS  Google Scholar 

  50. Wróbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54. https://doi.org/10.1016/j.jbiotec.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  51. Parveez GK, Bahariah B, Ayub NH, Masani MY, Rasid OA, Tarmizi AH, Ishak Z (2015) Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci 6:598. https://doi.org/10.3389/fpls.2015.00598

  52. McQualter RB, Petrasovits LA, Gebbie LK, Schweitzer D, Blackman DM, Chrysanthopoulos P, Hodson MP, Plan MR, Riches JD, Snell KD, Brumbley SM (2015) The use of an acetoacetyl-Co A synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnol J 13:700–707. https://doi.org/10.1111/pbi.12298

    Article  CAS  PubMed  Google Scholar 

  53. Malik MR, Yang W, Patterson N, Tang J, Wellinghoff RL, Preuss ML, Burkitt C, Sharma N, Ji Y, Jez JM, Peoples OP (2015) Production of high levels of poly‐3‐hydroxybutyrate in plastids of Camelina sativa seeds. Plant Biotechnol J 13675–13688. https://doi.org/10.1111/pbi.12290

  54. Petrasovits LA, McQualter RB, Gebbie LK, Blackman DM, Nielsen LK, Brumbley SM (2013) Chemical inhibition of acetyl coenzyme A carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane. Plant Biotechnol J 11:1146–1151. https://doi.org/10.1111/pbi.12109

    Article  CAS  PubMed  Google Scholar 

  55. Matsumoto KI, Nagao R, Murata T, Arai Y, Kichise T, Nakashita H, Taguchi S, Shimada H, Doi Y (2005) Enhancement of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Production in the Transgenic Arabidopsis thaliana by the in Vitro Evolved Highly Active Mutants of Polyhydroxyalkanoate (PHA) Synthase from Aeromonas caviae. Biomacromolecules 6:2126–2130. https://doi.org/10.1021/bm050113g

    Article  CAS  PubMed  Google Scholar 

  56. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/s0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  57. Yee LH, Foster LJ (2014) Polyhydroxyalkanoates as packaging materials: Current applications and future prospects. In: Roy I, Visakh, PM (Eds.), Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites. R Soc Chem 30:183–207. https://doi.org/10.1039/9781782622314-00183

  58. Czerniecka-Kubicka A, Frącz W, Jasiorski M, Błażejewski W, Pilch-Pitera B, Pyda M, Zarzyka I (2017) Thermal properties of poly (3-hydroxybutyrate) modified by nanoclay. J Therm Anal Calorim 128:1513–1526. https://doi.org/10.1007/s10973-016-6039-9

    Article  CAS  Google Scholar 

  59. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. EXPRESS Polym Lett 8:791–808. https://doi.org/10.3144/expresspolymlett.2014.82

    Article  CAS  Google Scholar 

  60. Pardo-Ibáñez P, Lopez-Rubio A, Martínez-Sanz M, Cabedo L, Lagaron JM (2014) Keratin–polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J Appl Polym Sci 131:1–10. https://doi.org/10.1002/app.39947

    Article  CAS  Google Scholar 

  61. Vähä-Nissi M, Hjelt T, Jokio M, Kokkonen R, Kukkonen J, Mikkelson A (2008) New method for aroma barrier testing. Packag Technol Sci 21:425–431. https://doi.org/10.1002/pts.791

    Article  CAS  Google Scholar 

  62. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of nanobiocomposites of poly (3-hydroxybutyrate) and layered silicates. J Appl Polym Sci 108:2787–2801. https://doi.org/10.1002/app.27622

    Article  CAS  Google Scholar 

  63. Rivera-Briso AL, Serrano-Aroca Á (2018) Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate): enhancement strategies for advanced applications. Polymers 10:732. https://doi.org/10.3390/polym10070732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vartiainen J, Kaljunen T, Nykänen H, Malm T, Tammelin T (2014) Improving multilayer packaging performance with nanocellulose barrier layer. TAPPI PLACE Conference 2014. TAPPI Press, Ponte Vedra, United States, pp 763–790

    Google Scholar 

  65. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. De Gruyter, Berlin, Boston. https://doi.org/10.1515/9783110480412

    Article  Google Scholar 

  66. Melendez-Rodriguez B, Torres-Giner S, Angulo I, Pardo-Figuerez M, Hilliou L, Escuin JM, Cabedo L, Nevo Y, Prieto C, Lagaron JM (2021) High-oxygen-barrier multilayer films based on polyhydroxyalkanoates and cellulose nanocrystals. Nanomaterials 11:1443. https://doi.org/10.3390/nano11061443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grigore ME, Grigorescu RM, Iancu L, Ion RM, Zaharia C, Andrei ER (2019) Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed 30:695–712. https://doi.org/10.1080/09205063.2019.1605866

    Article  CAS  PubMed  Google Scholar 

  68. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449. https://doi.org/10.1111/j.1365-2672.2007.03335.x

    Article  CAS  PubMed  Google Scholar 

  69. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegradation 52:69–91. https://doi.org/10.1016/s0964-8305(02)00177-4

    Article  CAS  Google Scholar 

  70. Kuciel S, Mazur K, Jakubowska P (2019) Novel biorenewable composites based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with natural fillers. J Polym Environ 27:803–815. https://doi.org/10.1007/s10924-019-01392-4

    Article  CAS  Google Scholar 

  71. Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P (2021) Established and emerging producers of PHA: redefining the possibility. Appl Biochem Biotechnol 193:3812–3854. https://doi.org/10.1007/s12010-021-03626-5

    Article  CAS  PubMed  Google Scholar 

  72. Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47. https://doi.org/10.1016/j.mser.2010.11.002

    Article  CAS  Google Scholar 

  73. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. https://doi.org/10.1002/jctb.2392

    Article  CAS  Google Scholar 

  74. Brigham CJ, Sinskey AJ (2012) Applications of polyhydroxyalkanoates in the medical industry. Int J Biotech Well Indus 1:52. https://doi.org/10.6000/1927-3037.2012.01.01.03

    Article  CAS  Google Scholar 

  75. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  76. Yan C, Wang Y, Shen XY, Yang G, Jian J, Wang HS, Chen GQ, Wu Q (2011) MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials 32:6435–6444. https://doi.org/10.1016/j.biomaterials.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  77. Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S (2015) Bioplastics: advances in polyhydroxybutyrate research. In: Abe A, Albertsson AC, Coates GW, Genzer J, Kobayashi S, Lee KS, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Theato P, Voit B, Wiesner U, Zhang X (Eds.), Adv Polym Sci, Springer, Berlin, Heidelberg, https://doi.org/10.1007/12_2014_297

  78. Hufenus R, Reifler FA, Maniura-Weber K, Spierings A, Zinn M (2012) Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly (lactic acid) and poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]. Macromol Mater Eng 297:75–84. https://doi.org/10.1002/mame.201100063

    Article  CAS  Google Scholar 

  79. Patrício SOP, Pereira FV, dos Santos MC, de Souza PP, Roa JP, Orefice RL (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Appl Polym Sci 127:3613–3621. https://doi.org/10.1002/app.37811

    Article  CAS  Google Scholar 

  80. Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresour technol 86:33–37. https://doi.org/10.1016/s0960-8524(02)00110-4

    Article  CAS  PubMed  Google Scholar 

  81. Zhang M, Thomas NL (2010) Preparation and properties of polyhydroxybutyrate blended with different types of starch. J Appl Polym Sci 116:688–694. https://doi.org/10.1002/app.30991

    Article  CAS  Google Scholar 

  82. Ramsay BA, Langlade V, Carreau PJ, Ramsay JA (1993) Biodegradability and mechanical properties of poly-(beta-hydroxybutyrate-co-beta-hydroxyvalerate)-starch blends. Appl Environ Microbiol 59:1242–1246. https://doi.org/10.1128/aem.59.4.1242-1246.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Don TM, Chung CY, Lai SM, Chiu HJ (2010) Preparation and properties of blends from poly (3-hydroxybutyrate) with poly (vinyl acetate)-modified starch. Polym Eng Sci 50:709–718. https://doi.org/10.1002/pen.21575

    Article  CAS  Google Scholar 

  84. Lai SM, Sun WW, Don TM (2015) Preparation and characterization of biodegradable polymer blends from poly (3-hydroxybutyrate)/poly (vinyl acetate)-modified corn starch. Polym Eng Sci 55:1321–1329. https://doi.org/10.1002/pen.24071

    Article  CAS  Google Scholar 

  85. Xu P, Zeng Q, Cao Y, Ma P, Dong W, Chen M (2017) Interfacial modification on polyhydroxyalkanoates/starch blend by grafting in-situ. Carbohydr Polym 174:716–722. https://doi.org/10.1016/j.carbpol.2017.06.048

    Article  CAS  PubMed  Google Scholar 

  86. Florez JP, Fazeli M, Simão RA (2019) Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. Int J Biol Macromol 123:609–621. https://doi.org/10.1016/j.ijbiomac.2018.11.070

    Article  CAS  PubMed  Google Scholar 

  87. Mariana M, Alfatah T, HPS AK, Yahya EB, Olaiya NG, Nuryawan A, Mistar EM, Abdullah CK, Abdulmadjid SN, Ismail H, (2021) A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. J Mater Res Technol 15:2287–2316. https://doi.org/10.1016/j.jmrt.2021.08.139

    Article  CAS  Google Scholar 

  88. Weihua K, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly (3-hydroxybutyrate). J Appl Polym Sci 94:2466–2474. https://doi.org/10.1002/app.21204

    Article  CAS  Google Scholar 

  89. Mousavioun P, Halley PJ, Doherty WO (2013) Thermophysical properties and rheology of PHB/lignin blends. Ind Crops Prod 50:270–275. https://doi.org/10.1016/j.indcrop.2013.07.026

    Article  CAS  Google Scholar 

  90. Kovalcik A, Machovsky M, Kozakova Z, Koller M (2015) Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 94:25–34. https://doi.org/10.1016/j.reactfunctpolym.2015.07.001

    Article  CAS  Google Scholar 

  91. Kai D, Chong HM, Chow LP, Jiang L, Lin Q, Zhang K, Zhang H, Zhang Z, Loh XJ (2018) Strong and biocompatible lignin/poly (3-hydroxybutyrate) composite nanofibers. Compos Sci Technol 158:26–33. https://doi.org/10.1016/j.compscitech.2018.01.046

    Article  CAS  Google Scholar 

  92. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G (2019) Integrating softwood biorefinery lignin into polyhydroxybutyrate composites and application in 3D printing. Mater Today Commun 19:286–296. https://doi.org/10.1016/j.mtcomm.2019.02.008

    Article  CAS  Google Scholar 

  93. Manikandan NA, Pakshirajan K, Pugazhenthi G (2020) A closed-loop biorefinery approach for polyhydroxybutyrate (PHB) production using sugars from carob pods as the sole raw material and downstream processing using the co-product lignin. Bioresour Technol 307:123247. https://doi.org/10.1016/j.biortech.2020.123247

    Article  CAS  PubMed  Google Scholar 

  94. Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M, Machovsky M, Šourková M, Marova I, Kovalcik A (2020) Active biodegradable packaging films modified with grape seeds lignin. RSC adv 10:29202–29213. https://doi.org/10.1039/d0ra04074f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raza ZA, Khalil S, Abid S (2020) Recent progress in development and chemical modification of poly (hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 160:77–100. https://doi.org/10.1016/j.ijbiomac.2020.05.114

    Article  CAS  PubMed  Google Scholar 

  96. Raza ZA, Noor S, Khalil S (2019) Recent developments in the synthesis of poly (hydroxybutyrate) based biocomposites. Biotechnol Prog 35:e2855. https://doi.org/10.1002/btpr.2855

    Article  CAS  PubMed  Google Scholar 

  97. Abu Aldam S, Dey M, Javaid S, Ji Y, Gupta S (2020) On the synthesis and characterization of polylactic acid, polyhydroxyalkanoate, cellulose acetate, and their engineered blends by solvent casting. J Mater Eng Perform 29:5542–5556. https://doi.org/10.1007/s11665-020-04594-3

    Article  CAS  Google Scholar 

  98. Nazaruddin NS, Jamari SS (2021) Effect on Thermal Properties of Nanocellulose Fibre (NCF) Reinforced Biodegradable Polyhydroxylalkanoates (PHA) Composite. J Chem Technol Biotechnol 7:10–13. https://doi.org/10.15282/jceib.v7i1.6111

    Article  Google Scholar 

  99. Mármol G, Gauss C, Fangueiro R (2020) Potential of cellulose microfibers for PHA and PLA biopolymers reinforcement. Molecules 25:4653. https://doi.org/10.3390/molecules25204653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromol 7:2044–2051. https://doi.org/10.1021/bm050897y

    Article  CAS  Google Scholar 

  101. Hameed N, Guo Q, Tay FH, Kazarian SG (2011) Blends of cellulose and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) prepared from the ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 86:94–104. https://doi.org/10.1016/j.carbpol.2011.04.016

    Article  CAS  Google Scholar 

  102. Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Curr Appl Phys 11:247–249. https://doi.org/10.1016/j.cap.2010.07.016

    Article  Google Scholar 

  103. Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromol 16:1040–1049. https://doi.org/10.1021/acs.biomac.5b00049

    Article  CAS  Google Scholar 

  104. Seoane IT, Fortunati E, Puglia D, Cyras VP, Manfredi LB (2016) Development and characterization of bionanocomposites based on poly (3-hydroxybutyrate) and cellulose nanocrystals for packaging applications. Polym Int 65:1046–1053. https://doi.org/10.1002/pi.5150

    Article  CAS  Google Scholar 

  105. Meereboer KW, Pal AK, Misra M, Mohanty AK (2020) Sustainable PHBV/cellulose acetate blends: effect of a chain extender and a plasticizer. ACS Omega 5:14221–14231. https://doi.org/10.1021/acsomega.9b03369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yeo JC, Muiruri JK, Thitsartarn W, Li Z, He C (2018) Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages and applications. Mater Sci Eng C 92:1092–1116. https://doi.org/10.1016/j.msec.2017.11.006

    Article  CAS  Google Scholar 

  107. Ramachandran H, Kannusamy S, Huong KH, Mathava R, Amirul AAA (2014) Blends of Polyhydroxyalkanoates (PHAs). In: Roy I, Visakh PM (Eds.), Polyhydroxyalkanoate (PHA) Based Blends, Composites and Nanocomposites, Royal Society of Chemistry Publishing, pp 66–97. https://doi.org/10.1039/9781782622314-00066

  108. Cao W, Wang A, Jing D, Gong Y, Zhao N (2005) Zhang X (2005) Novel biodegradable films and scaffolds of chitosan blended with poly (3-hydroxybutyrate). J Biomater Sci Polym Ed 16:1379–1394. https://doi.org/10.1163/156856205774472308

    Article  CAS  PubMed  Google Scholar 

  109. Rajan R, Sreekumar PA, Joseph K, Skrifvars M (2012) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124:3357–3362. https://doi.org/10.1002/app.35341

    Article  CAS  Google Scholar 

  110. Briassoulis D, Tserotas P, Athanasoulia IG (2021) Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics. J Clean Prod 318:128555. https://doi.org/10.1016/j.jclepro.2021.128555

    Article  CAS  Google Scholar 

  111. Khasanah RKR, Sato H, Takahashi I, Ozaki Y (2015) Intermolecular hydrogen bondings in the poly (3-hydroxybutyrate) and chitin blends: their effects on the crystallization behavior and crystal structure of poly (3-hydroxybutyrate). Polymer 75:141–150. https://doi.org/10.1016/j.polymer.2015.08.011

    Article  CAS  Google Scholar 

  112. Ikejima T, Yagi K, Inoue Y (1999) Thermal properties and crystallization behavior of poly (3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421. https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2%3C413::AID-MACP413%3E3.0.CO;2-Q

    Article  CAS  Google Scholar 

  113. Karbasi S, Khorasani SN, Ebrahimi S, Khalili S, Fekrat F, Sadeghi D (2016) Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications. Adv Biomed Res 5:177. https://doi.org/10.4103/2277-9175.188490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rofeal M, Abd El-Malek F, Qi X (2021) In vitro assessment of green polyhydroxybutyrate/chitosan blend loaded with kaempferol nanocrystals as a potential dressing for infected wounds. Nanotechnology 32:375102. https://doi.org/10.1088/1361-6528/abf7ee

    Article  CAS  Google Scholar 

  115. Baraki SY, Zhang Y, Li X, Ding L, Debeli DK, Macharia DK, Wang B, Feng X, Mao Z (2021) Sui X (2021) Regenerated chitin reinforced polyhydroxybutyrate composites via Pickering emulsion template with improved rheological, thermal, and mechanical properties. Compos Commun 25:100655. https://doi.org/10.1016/j.coco.2021.100655

    Article  Google Scholar 

  116. Zaccone M, Patel MK, De Brauwer L, Nair R, Montalbano ML, Monti M, Oksman K (2022) Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly (Hydroxybutyrate) Biopolymer. Polymers 14:562. https://doi.org/10.3390/polym14030562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kai Z, Ying D, Guo-Qiang C (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem Eng J 16:115–123. https://doi.org/10.1016/S1369-703X(03)00029-9

    Article  CAS  Google Scholar 

  118. Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomater 24:1041–1045. https://doi.org/10.1016/s0142-9612(02)00426-x

    Article  CAS  Google Scholar 

  119. Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P (2007) Bone scaffolds from electrospun fiber mats of poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer 48:1419–1427. https://doi.org/10.1016/j.polymer.2007.01.014

    Article  CAS  Google Scholar 

  120. Nerkar M, Ramsay JA, Ramsay BA, Kontopoulou M (2014) Melt compounded blends of short and medium chain-length poly-3-hydroxyalkanoates. J Polym Environ 22:236–243. https://doi.org/10.1007/s10924-013-0635-6

    Article  CAS  Google Scholar 

  121. Turco R, Corrado I, Zannini D, Gargiulo L, Di Serio M, Pezzella C, Santagata G (2022) Upgrading cardoon biomass into Polyhydroxybutyrate based blends: a holistic approach for the synthesis of biopolymers and additives. Bioresour Technol 363:127954. https://doi.org/10.1016/j.biortech.2022.127954

    Article  CAS  PubMed  Google Scholar 

  122. Panaitescu DM, Frone AN, Nicolae CA, Gabor AR, Miu DM, Soare MG, Vasile BS, Lupescu I (2023) Poly (3-hydroxybutyrate) nanocomposites modified with even and odd chain length polyhydroxyalkanoates. Int J Biol Macromol 10:125324. https://doi.org/10.1016/j.ijbiomac.2023.125324

    Article  CAS  Google Scholar 

  123. Pavan FA, Junqueira TL, Watanabe MD, Bonomi A, Quines LK, Schmidell W, de Aragao GM (2019) Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem Eng J 146:97–104. https://doi.org/10.1016/j.bej.2019.03.009

    Article  CAS  Google Scholar 

  124. Ecker JV, Burzic I, Haider A, Hild S, Rennhofer H (2019) Improving the impact strength of PLA and its blends with PHA in fused layer modelling. Polym Test 78:105929. https://doi.org/10.1016/j.polymertesting.2019.105929

    Article  CAS  Google Scholar 

  125. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. https://doi.org/10.1002/adv.20235

    Article  CAS  Google Scholar 

  126. D’amico DA, Montes MI, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly (3-hydroxybutirate) blends: use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28. https://doi.org/10.1016/j.polymertesting.2015.11.004

    Article  CAS  Google Scholar 

  127. Aydemir D, Gardner DJ (2020) Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydr Polym 250:116867. https://doi.org/10.1016/j.carbpol.2020.116867

    Article  CAS  PubMed  Google Scholar 

  128. Chan RT, Marçal H, Russell RA, Holden PJ, Foster LJ (2011) Application of polyethylene glycol to promote cellular biocompatibility of polyhydroxybutyrate films. Int J Polym Sci 1–9. https://doi.org/10.1155/2011/473045

  129. Catoni SEM, Trindade KN, Gomes CA, Schneider AL, Pezzin A, Soldi V (2013) Influence of poly (ethylene grycol)-(PEG) on the properties of influence of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-PHBV. Polímeros 23:320–325. https://doi.org/10.4322/polimeros.2013.037

    Article  CAS  Google Scholar 

  130. Achim N, Husin H, Hassan Z (2019) Blending poly (3-hydroxybutyrate) with polyethylene glycol (PEG): thermal behaviour and rheological study. J Mech Eng Sci 13:5294–5305. https://doi.org/10.15282/jmes.13.3.2019.06.0432

    Article  CAS  Google Scholar 

  131. Thanh NH, Olekhnovich R, Sitnikova V, Kremleva A, Snetkov P, Uspenskaya M (2023) PHB/PEG Nanofiber Mat Obtained by Electrospinning and Their Performances. Technologies 11:48. https://doi.org/10.3390/technologies11020048

    Article  Google Scholar 

  132. Meng D, Xie J, Waterhouse GI, Zhang K, Zhao Q, Wang S, Qiu S, Chen K, Li J, Ma C, Pan Y (2020) Biodegradable Poly (butylene adipate-co-terephthalate) composites reinforced with bio-based nanochitin: preparation, enhanced mechanical and thermal properties. J Appl Polym Sci 137:48485. https://doi.org/10.1002/app.48485

    Article  CAS  Google Scholar 

  133. Garcia-Garcia D, Quiles-Carrillo L, Balart R, Torres-Giner S, Arrieta PM (2022) Innovative solutions and challenges to increase the use of Poly (3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 17:111505. https://doi.org/10.1016/j.eurpolymj.2022.111505

    Article  CAS  Google Scholar 

  134. Tanadchangsaeng N, Khanpimai D, Kitmongkonpaisan S, Chobchuenchom W, Koobkokkruad T, Sathirapongsasuti N (2016) Fabrication and characterization of electrospun nanofiber films of PHA/PBAT biopolymer blend containing chilli herbal extracts (capsicum frutescens L.). Int J Food Eng 2:61–65. https://doi.org/10.18178/ijfe.2.1.61-65

    Article  Google Scholar 

  135. Beber VC, De Barros S, Banea MD, Brede M, De Carvalho LH, Hoffmann R, Costa AR, Bezerra EB, Silva ID, Haag K, Koschek K (2018) Effect of babassu natural filler on PBAT/PHB biodegradable blends: an investigation of thermal, mechanical, and morphological behavior. Materials 11:820. https://doi.org/10.3390/ma11050820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pal AK, Wu F, Misra M, Mohanty AK (2020) Reactive extrusion of sustainable PHBV/PBAT-based nanocomposite films with organically modified nanoclay for packaging applications: Compression moulding vs cast film extrusion. Compos B: Eng 198:108141. https://doi.org/10.1016/j.compositesb.2020.108141

  137. Jeffri NI, Nurul Fazita MR, Leh CP, Hashim R, Mohamad Haafiz MK, Abdullah CK, Arai T, Kosugi A (2022) Processing and Characterization of Poly (Hydroxybutyrate)(PHB) and Poly (Butylene-Co-Adipate-Terephthalate)(PBAT) Blends for Fused Deposition Modeling (FDM) 3D Printing. In Asian Workshop on Polymer Processing, Springer Nature Singapore 24:17–31. https://doi.org/10.1007/978-981-99-2015-0_2

    Article  Google Scholar 

  138. Garcia-Garcia D, Lopez-Martinez J, Balart R, Strömberg E, Moriana R (2018) Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly (3-hydroxybutyrate)/poly (ε-caprolactone)(PHB/PCL) thermoplastic blend. Eur Polym J 104:10–18. https://doi.org/10.1016/j.eurpolymj.2018.04.036

    Article  CAS  Google Scholar 

  139. de Paula CM, de Menezes LR, da Rocha Rodrigues EJ, Tavares MI (2021) Selective localization of nanohydroxyapatite in poly (3-hydroxybutyrate)/polycaprolactone blends composites and its effects on crystallization and molecular dynamics. J Mater Sci 56:3692–3712. https://doi.org/10.1007/s10853-020-05492-8

    Article  CAS  Google Scholar 

  140. Garcia-Garcia D, Ferri JM, Boronat T, López-Martínez J, Balart R (2016) Processing and characterization of binary poly (hydroxybutyrate)(PHB) and poly (caprolactone)(PCL) blends with improved impact properties. Polym Bull 73:3333–3350. https://doi.org/10.1007/s00289-016-1659-6

    Article  CAS  Google Scholar 

  141. Garcia-Garcia D, Rayón E, Carbonell-Verdu A, López-Martínez J, Balart R (2017) Improvement of the compatibility between poly (3-hydroxybutyrate) and poly (ε-caprolactone) by reactive extrusion with dicumyl peroxide. Eur Polym J 86:41–57. https://doi.org/10.1016/j.eurpolymj.2016.11.018

    Article  CAS  Google Scholar 

  142. Przybysz M, Marć M, Klein M, Saeb MR, Formela K (2018) Structural, mechanical and thermal behavior assessments of PCL/PHB blends reactively compatibilized with organic peroxides. Polym Test 67:513–521. https://doi.org/10.1016/j.polymertesting.2018.03.014

    Article  CAS  Google Scholar 

  143. Ma P, Hristova-Bogaerds DG, Lemstra PJ, Zhang Y, Wang S (2012) Toughening of PHBV/PBS and PHB/PBS blends via in situ compatibilization using dicumyl peroxide as a free-radical grafting initiator. Macromol Mater Eng 297:402–410. https://doi.org/10.1002/mame.201100224

    Article  CAS  Google Scholar 

  144. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly (3-hydroxybutyrate-co-hydroxyvalerate) and poly (butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101. https://doi.org/10.1021/am3004522

    Article  CAS  PubMed  Google Scholar 

  145. Luoma E, Rokkonen T, Tribot A, Nättinen K, Lahtinen J (2022) Poly (butylene succinate-co-adipate)/poly (hydroxybutyrate) blend films and their thermal, mechanical and gas barrier properties. Polym from Renew Resour 13:83–101. https://doi.org/10.1177/20412479221112176

    Article  Google Scholar 

  146. Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromol 11:3413–3421. https://doi.org/10.1021/bm100912v

    Article  CAS  Google Scholar 

  147. Cabral DD, Car AJ (2019) Miscibility of Poly (hydroxybutyrate)/Poly (vinyl alcohol) Melt Blends Plasticized with Glycerol. J Renew Mater 7:325. https://doi.org/10.32604/jrm.2019.01794

    Article  CAS  Google Scholar 

  148. Rebia RA, Rozet S, Tamada Y, Tanaka T (2018) Biodegradable PHBH/PVA blend nanofibers: fabrication, characterization, in vitro degradation, and in vitro biocompatibility. Polym Degrad Stab 154:124–136. https://doi.org/10.1016/j.polymdegradstab.2018.05.018

    Article  CAS  Google Scholar 

  149. Vieira MG, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  150. Rahman M, Brazel CS (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29:1223–1248. https://doi.org/10.1016/j.progpolymsci.2004.10.001

    Article  CAS  Google Scholar 

  151. Sunny MC, Ramesh P, George KE (2004) Use of polymeric plasticizers in polyvinyl chloride to reduce conventional plasticizer migration for critical applications. J Elastomers Plast 36:19–31. https://doi.org/10.1177/0095244304038016

    Article  CAS  Google Scholar 

  152. Baltacioğlu H, Balköse D (1999) Effect of zinc stearate and/or epoxidized soybean oil on gelation and thermal stability of PVC-DOP plastigels. J Appl Polym Sci 74:2488–2498. https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10%3c2488::AID-APP18%3e3.0.CO;2-B

    Article  Google Scholar 

  153. Râpă M, Darie-Niţă RN, Grosu E, Tănase EE, Trifoi AR, Papa T, Vasile CJ (2015) Effect of plasticizers on melt processability and properties of PHB. J Optoelectron Adv Mater 17:1778–1784

    Google Scholar 

  154. Gigante V, Seggiani M, Cinelli P, Signori F, Vania A, Navarini L, Amato G, Lazzeri A (2021) Utilization of coffee silverskin in the production of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer-based thermoplastic biocomposites for food contact applications. Compos - A: Appl Sci Manuf 140:106172. https://doi.org/10.1016/j.compositesa.2020.106172

    Article  CAS  Google Scholar 

  155. Hosoda N, Tsujimoto T, Uyama H (2014) Plant oil-based green composite using porous poly (3-hydroxybutyrate). Polym J 46:301–306. https://doi.org/10.1038/pj.2014.1

    Article  CAS  Google Scholar 

  156. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M (2017) Plasticized poly (3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci 134:1–14. https://doi.org/10.1002/app.44810

    Article  CAS  Google Scholar 

  157. Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physical–chemical and biodegradation properties of poly (3-hydroxybutyrate). Polym Degrad Stab 91:1954–1959. https://doi.org/10.1016/j.polymdegradstab.2006.02.008

    Article  CAS  Google Scholar 

  158. Quispe MM, Lopez OV, Boina DA, Stumbé JF, Villar MA (2021) Glycerol-based additives of poly (3-hydroxybutyrate) films. Polym Test 93:107005. https://doi.org/10.1016/j.polymertesting.2020.107005

    Article  CAS  Google Scholar 

  159. Siemann U (2005) Solvent cast technology – a versatile tool for thin film production. Progr Colloid Polym Sci 130:1–14. https://doi.org/10.1007/b107336

    Article  CAS  Google Scholar 

  160. Anbukarasu P, Sauvageau D, Elias A (2015) Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep 5:17884. https://doi.org/10.1038/srep17884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Akin O, Tihminlioglu F (2018) Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ 26:1121–1132. https://doi.org/10.1007/s10924-017-1017-2

    Article  CAS  Google Scholar 

  162. Dasan YK, Bhat AH, Ahmad F (2017) Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohydr Polym 157:1323–1332. https://doi.org/10.1016/j.carbpol.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  163. Anjana RG, Shree S, Sharma A, Panesar PS, Goswami S (2021) Recent approaches for enhanced production of microbial polyhydroxybutyrate: preparation of biocomposites and applications. Int J Biol Macromol 182:1650–1669. https://doi.org/10.1016/j.ijbiomac.2021.05.037

    Article  CAS  PubMed  Google Scholar 

  164. Tanner RI (1970) A theory of die-swell. J Polym Sci B Polym Phys 8:2067–2078. https://doi.org/10.1002/pol.1970.160081203

    Article  CAS  Google Scholar 

  165. Formela K, Zedler Ł, Hejna A, Tercjak A (2018) Reactive extrusion of bio-based polymer blends and composites-Current trends and future developments. EXPRESS Polym Lett 12:24–57. https://doi.org/10.3144/expresspolymlett.2018.4

    Article  Google Scholar 

  166. Bacalhau J, Cunha T, Afonso C (2017) Effect of Ni content on the hardenability of a bainitic steel for plastics processing. In 24th ABCM International Congress of Mechanical Engineering. Curitiba, PR, Brazil. https://doi.org/10.26678/abcm.cobem2017.cob17-1174

  167. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211. https://doi.org/10.1089/ten.2006.12.1197

    Article  CAS  PubMed  Google Scholar 

  168. Acevedo F, Villegas P, Urtuvia V, Hermosilla J, Navia R, Seeger M (2018) Bacterial polyhydroxybutyrate for electrospun fiber production. Int J Biol Macromol 106:692–697. https://doi.org/10.1016/j.ijbiomac.2017.08.066

    Article  CAS  PubMed  Google Scholar 

  169. Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L (2013) Fabrication, characterization and cellular compatibility of poly (hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 8:e57157. https://doi.org/10.1371/journal.pone.0057157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y (2016) Poly (hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C 58:757–767. https://doi.org/10.1016/j.msec.2015.09.048

    Article  CAS  Google Scholar 

  171. Bakhtiari SS, Karbasi S, Toloue EB (2021) Modified poly (3-hydroxybutyrate)-based scaffolds in tissue engineering applications: a review. Int J Biol Macromol 166:986–998. https://doi.org/10.1016/j.ijbiomac.2020.10.255

    Article  CAS  Google Scholar 

  172. Asl MA, Karbasi S, Beigi-Boroujeni S, Benisi SZ, Saeed M (2021) Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. Int J Biol Macromol 191:500–513. https://doi.org/10.1016/j.ijbiomac.2021.09.078

    Article  CAS  PubMed  Google Scholar 

  173. Zarei M, Karbasi S (2018) Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications. J Porous Mater 25:259–272. https://doi.org/10.1007/s10934-017-0439-5

    Article  CAS  Google Scholar 

  174. Zhang B, Huang C, Zhao H, Wang J, Yin C, Zhang L, Zhao Y (2019) Effects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers 11:2063. https://doi.org/10.3390/polym11122063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Karimi TA, Karbasi S, Naghashzargar E, Salehi H (2020) Biodegradation and cellular evaluation of aligned and random poly (3-hydroxybutyrate)/chitosan electrospun scaffold for nerve tissue engineering applications. Mater Technol 35:92–101. https://doi.org/10.1080/10667857.2019.1658170

    Article  CAS  Google Scholar 

  176. Mitschang P, Hildebrandt K (2012) Polymer and composite moulding technologies for automotive applications. In: Rowe J (ed) Advanced Materials in Automotive Engineering. Woodhead Publishing, pp 210–229

    Chapter  Google Scholar 

  177. Agrawal P, Alves AM, Brito GF, Cavalcanti SN, Araujo AP, Melo TJ (2018) Effect of ethylene-methyl acrylate compatibilizer on the thermo-mechanical, rheological, and morphological properties of poly (Lactic acid)/biopolyethylene/clay biocomposites. Polym Compos 39:E164–E173. https://doi.org/10.1002/pc.24254

    Article  CAS  Google Scholar 

  178. Ketabchi MR, Hoque ME, Khalid Siddiqui M (2015) Critical Concerns on Manufacturing Processes of Natural Fibre Reinforced Polymer Composites. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME (eds) Manufacturing of Natural Fibre Reinforced Polymer Composites. Springer, Cham, pp 125–138

    Chapter  Google Scholar 

  179. Correa JP, Molina V, Sanchez M, Kainz C, Eisenberg P, Massani MB (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packag Shelf Life 11:31–39. https://doi.org/10.1016/j.fpsl.2016.11.004

    Article  Google Scholar 

  180. Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB (2022) Chitin nanocomposite based on plasticized poly (lactic acid)/poly (3-hydroxybutyrate)(PLA/PHB) blends as fully biodegradable packaging materials. Polymers 14:3177. https://doi.org/10.3390/polym14153177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhu C, Li T, Mohideen MM, Hu P, Gupta R, Ramakrishna S, Liu Y (2021) Realization of circular economy of 3D printed plastics: a review. Polymers 13:744. https://doi.org/10.3390/polym13050744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Park J, Lee SJ, Jo HH, Lee JH, Kim WD, Lee JY, Su A (2017) Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering. J Ind Eng Chem 46:175–181. https://doi.org/10.1016/j.jiec.2016.10.028

    Article  CAS  Google Scholar 

  183. Chiulan I, Frone AN, Brandabur C, Panaitescu DM (2017) Recent advances in 3D printing of aliphatic polyesters. Bioeng 5:1–18. https://doi.org/10.3390/bioengineering5010002

    Article  CAS  Google Scholar 

  184. Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V (2021) Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: materials, printing techniques, and applications. Mater Sci Eng C 127:112216. https://doi.org/10.1016/j.msec.2021.112216

    Article  CAS  Google Scholar 

  185. Wu CS, Liao HT, Cai YX (2017) Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym Degrad Stab 140:55–63. https://doi.org/10.1016/j.polymdegradstab.2017.04.016

    Article  CAS  Google Scholar 

  186. Lin X, Fan X, Li R, Li Z, Ren T, Ren X, Huang TS (2018) Preparation and characterization of PHB/PBAT–based biodegradable antibacterial hydrophobic nanofibrous membranes. Polym Adv Technol 29:481–489. https://doi.org/10.1002/pat.4137

    Article  CAS  Google Scholar 

  187. Pereira TF, Oliveira MF, Maia IA, Silva JV, Costa MF, Thiré RM (2012) 3D Printing of Poly (3-hydroxybutyrate) Porous Structures Using Selective Laser Sintering. Macromol Symp 319:64–73. https://doi.org/10.1002/masy.201100237

    Article  CAS  Google Scholar 

  188. Popa MS, Frone AN, Panaitescu DM (2022) Polyhydroxybutyrate blends: a solution for biodegradable packaging? Int J Biol Macromol 207:263–277. https://doi.org/10.1016/j.ijbiomac.2022.02.185

    Article  CAS  PubMed  Google Scholar 

  189. Fu Y, Wu G, Bian X, Zeng J, Weng Y (2020) Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend in freshwater with sediment. Molecules 25:3946. https://doi.org/10.3390/molecules25173946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Malafeev KV, Apicella A, Incarnato L, Scarfato P (2023) Understanding the impact of biodegradable microplastics on living organisms entering the food chain: a review. Polymers 15:3680. https://doi.org/10.3390/polym15183680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, Babu Padamati R, O’Connor KE (2018) Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 52:10441–10452. https://doi.org/10.1021/acs.est.8b02963

    Article  CAS  PubMed  Google Scholar 

  192. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/D0GC01647K

    Article  CAS  Google Scholar 

  193. Kumagai Y, Doi Y (1992) Enzymatic degradation and morphologies of binary blends of microbial poly (3-hydroxy butyrate) with poly (ε-caprolactone), poly (1, 4-butylene adipate and poly (vinyl acetate). Polym Degrad Stab 36:241–248. https://doi.org/10.1016/0141-3910(92)90062-a

    Article  CAS  Google Scholar 

  194. Avella M, Martuscelli E, Raimo M (2000) Review Properties of blends and composites based on poly (3-hydroxy) butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate)(PHBV) copolymers. J Mater Sci 35:523–545. https://doi.org/10.1023/A:1004740522751

    Article  CAS  Google Scholar 

  195. Wu CS, Liao HT (2014) The mechanical properties, biocompatibility and biodegradability of chestnut shell fibre and polyhydroxyalkanoate composites. Polym Degrad Stab 99:274–282. https://doi.org/10.1016/j.polymdegradstab.2013.10.019

    Article  CAS  Google Scholar 

  196. Musioł M, Sikorska W, Adamus G, Janeczek H, Richert J, Malinowski R, Jiang G, Kowalczuk M (2016) Forensic engineering of advanced polymeric materials. Part III-Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manage 52:69–76. https://doi.org/10.1016/j.wasman.2016.04.016

    Article  CAS  Google Scholar 

  197. Carofiglio VE, Stufano P, Cancelli N, De Benedictis VM, Centrone D, De Benedetto E, Cataldo A, Sannino A, Demitri C (2017) Novel PHB/Olive mill wastewater residue composite based film: Thermal, mechanical and degradation properties. J Environ Chem Eng 5:6001–6007. https://doi.org/10.1016/j.jece.2017.11.013

    Article  CAS  Google Scholar 

  198. Sinsukudomchai P, Aht-Ong D, Honda K, Napathorn SC (2023) Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. PLoS One 18:e0282311. https://doi.org/10.1371/journal.pone.0282311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gérard T, Budtova T (2011) Preparation and characterization of Polyhydroxyalkanoates (PHA) and Polylactide (PLA) blends. In 27th World Congress of the Polymer Processing Society, Polymer Processing Society 1–4. https://hal.science/hal-00678829/

  200. Pryadko A, Surmeneva MA, Surmenev RA (2021) Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers 13:1738. https://doi.org/10.3390/polym13111738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sheng R, Mu J, Chernozem RV, Mukhortova YR, Surmeneva MA, Pariy IO, Ludwig T, Mathur S, Xu C, Surmenev RA, Liu HH (2023) Fabrication and characterization of piezoelectric polymer composites and cytocompatibility with mesenchymal stem cells. ACS Appl Mater Interfaces 15:3731–3743. https://doi.org/10.1021/acsami.2c15802

    Article  CAS  PubMed  Google Scholar 

  202. Atta OM, Manan S, Shahzad A, Ul-Islam M, Ullah MW, Yang G (2022) Biobased materials for active food packaging: a review. Food Hydrocoll 125:107419. https://doi.org/10.1016/j.foodhyd.2021.107419

    Article  CAS  Google Scholar 

  203. Miao L, Walton WC, Wang L, Li L, Wang Y (2019) Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters. Food Packag Shelf Life 22:100388. https://doi.org/10.1016/j.fpsl.2019.100388

    Article  Google Scholar 

  204. Chandar JV, Shanmugan S, Mutharasu D, Azlan AA (2017) Poly (3-hydroxybutyrate-co-15 mol% 3hydroxyhexanoate)/ZnO nanocomposites by solvent casting method: a study of optical, surface, and thermal properties. Mater Res Express 4:015301. https://doi.org/10.1088/2053-1591/4/1/015301

    Article  CAS  Google Scholar 

  205. George N, Debroy A, Bhat S, Bindal S, Singh S (2021) Biowaste to bioplastics: an ecofriendly approach for a sustainable future. J Appl Biotechnol Rep 8:221–233. https://doi.org/10.30491/JABR.2021.259403.1318

    Article  CAS  Google Scholar 

  206. Kalia VC, Patel SK, Shanmugam R, Lee JK (2021) Polyhydroxyalkanoates: trends and advances toward biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  CAS  PubMed  Google Scholar 

  207. Venkatachalam H, Palaniswamy R (2020) Bioplastic world: A review. J Adv Sci Res 11:43–53. http://sciensage.info/index.php/JASR/article/view/505

  208. Abd El-malek F, Khairy H, Farag A, Omar S (2020) The sustainability of microbial bioplastics, production and applications. Int J Biol Macromol 157:319–328. https://doi.org/10.1016/j.ijbiomac.2020.04.076

    Article  CAS  Google Scholar 

  209. Rekhi P, Goswami M, Ramakrishna S, Debnath M (2022) Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 42:668–692. https://doi.org/10.1080/07388551.2021.1960265

    Article  CAS  PubMed  Google Scholar 

  210. Hungund BS, Umloti SG, Upadhyaya KP, Manjanna J, Yallappa S, Ayachit NH (2018) Development and characterization of polyhydroxybutyrate biocomposites and their application in the removal of heavy metals. Mater Today: Proc 5:21023–21029. https://doi.org/10.1016/j.matpr.2018.06.495

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal Bharali.

Ethics declarations

Conflict of interest

The authors affirm that they do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharjee, S.A., Gogoi, B., Bharali, P. et al. Recent trends in the development of Polyhydroxyalkanoates (PHAs) based biocomposites by blending with different bio-based polymers. J Polym Res 31, 98 (2024). https://doi.org/10.1007/s10965-024-03947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03947-z

Keywords

Navigation