Skip to main content
Log in

Achieving high-temperature resistance and excellent insulation property of epoxy by introducing triazine ring structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rapidly growing third-generation wide-band-gap semiconductor electronic device industry urgently requires high-temperature-resistant packaging materials. However, the epoxy molding compound materials cannot suffer the high-temperature working condition due to the intrinsic molecular chain structure of epoxy materials (EP). In this paper, bisphenol A-type cyanate (BADCy) with triazine ring structure was introduced into EP to improve its heat resistance. The curing reaction as well as the curing mechanism has been clearly revealed for BADCy/EP with different contents of BADCy according to the Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) results. In the whole copolymer system, the copolymer at higher BADCy concentration (50–60 mol%) achieved the highest crosslink density (12.8 × 10–3 mol/cm3), thus, showing excellent glass transition temperature (> 200 °C) and thermal decomposition temperature(T5% > 400 °C). The heat resistance and electrical insulation property of BADCy/EP system have been systematically investigated, and a balance between high heat resistance and good electrical insulation are achieved at 66 mol% BADCy content, where the glass transition temperature reaches 215 °C, which is 73 °C higher than that of the EP system of anhydride copolymer. The volume resistivity of 1.5 × 1015 Ω·m and dielectric constant of 3.3 is obtained, indicating excellent electrical insulation and dielectric properties of BADCy/EP. This work provides a facile and efficient strategy to improve the overall properties of EP by optimizing the molecular chain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Lee, V. Smet, R. Tummala, IEEE Trans. Emerg. Sel. Top. Power Electron. (2020). https://doi.org/10.1109/jestpe.2019.2951801

    Article  Google Scholar 

  2. X. She, A.Q. Huang, O. Lucia, IEEE Trans. Ind. Electron. (2017). https://doi.org/10.1109/Tie.2017.2652401

    Article  Google Scholar 

  3. X. Ding, Y. Zhou, J. Cheng, CES Trans. Elect. Mach. Syst. (2019). https://doi.org/10.30941/cestems.2019.00008

    Article  Google Scholar 

  4. Q. Li, F.Z. Yao, Y. Liu, Annu. Rev. Mater. Res. (2018). https://doi.org/10.1146/annurev-matsci-070317-124435

    Article  Google Scholar 

  5. Y.Y. Yao, G.Q. Lu, D. Boroyevich, IEEE Trans. Compon. Pack. Manuf. Technol. (2015). https://doi.org/10.1109/Tcpmt.2014.2337300

    Article  Google Scholar 

  6. C. Chen, CPSS Trans. Power Electron. Appl. (2017). https://doi.org/10.24295/cpsstpea.2017.00017

    Article  Google Scholar 

  7. C. Wong, Electronic Applications (1988). https://doi.org/10.1007/BFb0025903

  8. A. Inamdar, Y.H. Yang, A. Prisacaru, Polym. Degrad. Stab. (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109572

    Article  Google Scholar 

  9. J. Li, K. Mohanalingam, O. Gupte, 2021 IEEE 71st Electronic Components and Technology Conference (ECTC) IEEE (2021)

  10. B.L. Xue, R. Tang, D.W. Xue, Ind. Crops Prod. (2021). https://doi.org/10.1016/j.indcrop.2021.113583

    Article  Google Scholar 

  11. H. Jiang, L. Sun, Y.R. Zhang, Eur. Polym. J. (2018). https://doi.org/10.1016/j.eurpolymj.2018.09.020

    Article  Google Scholar 

  12. M.H. Wu, X. Liu, Y.B. Zhou, Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.135435

    Article  Google Scholar 

  13. Y. Tian, Q. Wang, L. Shen, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123124

    Article  Google Scholar 

  14. L.Q. Reyes, J. Zhang, B. Dao, J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.48874

    Article  Google Scholar 

  15. J. Ueyama, R. Ogawa, K. Ota, ACS Appl. Polym. Mater. (2021). https://doi.org/10.1021/acsapm.1c00995

    Article  Google Scholar 

  16. J. Li, C. Ren, Z. Sun, ACS Appl. Mater. Interfaces (2021). https://doi.org/10.1021/acsami.0c20537

    Article  Google Scholar 

  17. J.X. Li, C. Ren, D. An, Polymer (2020). https://doi.org/10.1016/j.polymer.2020.122454

    Article  Google Scholar 

  18. X. Li, Y. Zhou, Y. Bao, Ind. Eng. Chem. Res. (2022). https://doi.org/10.1021/acs.iecr.2c00048

    Article  Google Scholar 

  19. R.J. Iredale, C. Ward, I. Hamerton, Prog. Polym. Sci. (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.002

    Article  Google Scholar 

  20. N. Liu, H. Wang, B. Ma, Compos. Sci. Technol. (2022). https://doi.org/10.1016/j.compscitech.2021.109252

    Article  Google Scholar 

  21. Y. Ji, Y. Zhang, P. Wang, Fibers Polym. (2021). https://doi.org/10.1007/s12221-021-9142-x

    Article  Google Scholar 

  22. F. Wu, B. Song, J. Hah, J. Polym. Sci. Pol. Chem. (2018). https://doi.org/10.1002/pola.29214

    Article  Google Scholar 

  23. L. Tang, J. Dang, M.K. He, Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2018.11.018

    Article  Google Scholar 

  24. B.H. Wang, L.M. Liu, G.Z. Liang, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta07611k

    Article  Google Scholar 

  25. J. Bauer, M. Bauer, Acta Polym. Sin. (1990). https://doi.org/10.1002/actp.1990.010411006

    Article  Google Scholar 

  26. M.R. Kessler, Wiley Encyclopedia of Composites (2011). https://doi.org/10.1002/9781118097298.weoc062

  27. S. Goyal, M.J. Forrester, D. Coverdell, Macromolecules (2021). https://doi.org/10.1021/acs.macromol.1c01410

    Article  Google Scholar 

  28. T. Zheng, H. Xi, Z.X. Wang, Polym. Test. (2020). https://doi.org/10.1016/j.polymertesting.2020.106781

    Article  Google Scholar 

  29. H. Sun, Y.Y. Liu, Y.S. Wang, J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/App.40711

    Article  Google Scholar 

  30. J. Broughton, V. Smet, R.R. Tummala, J. Electron. Packag. (2018). https://doi.org/10.1115/1.4040828

    Article  Google Scholar 

  31. J.T. Miao, L. Yuan, Q.B. Guan, ACS Sustain. Chem. Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b01222

    Article  Google Scholar 

  32. I.M. Barszczewska-Rybarek, A. Korytkowska-Walach, M. Kurcok, Acta Bioeng. Biomech. (2017). https://doi.org/10.5277/ABB-00590-2016-01

    Article  Google Scholar 

  33. W.F.A. Su, C.-M. Chuang, J. Appl. Polym. Sci. (2002). https://doi.org/10.1002/app.10887

    Article  Google Scholar 

  34. R. Li, X. Yang, J. Li, Mater. Today Phys. (2022). https://doi.org/10.1016/j.mtphys.2021.100594

    Article  Google Scholar 

  35. H.M. Fang, S.L. Bai, C.P. Wong, Compos. A (2017). https://doi.org/10.1016/j.compositesa.2017.04.018

    Article  Google Scholar 

  36. J.T. Wan, J.Q. Zhao, B. Gan, ACS Sustain. Chem. Eng. (2016). https://doi.org/10.1021/acssuschemeng.6b00479

    Article  Google Scholar 

  37. M. Awais, X. Chen, Z. Hong, Compos. Sci. Technol. (2022). https://doi.org/10.1016/j.compscitech.2022.109576

    Article  Google Scholar 

  38. P. Preetha, M.J. Thomas, IEEE Trans. Dielectr. Electr. Insul. (2011). https://doi.org/10.1109/Tdei.2011.6032821

    Article  Google Scholar 

  39. Q.Y. Zhang, X. Chen, B. Zhang, Matter (2021). https://doi.org/10.1016/j.matt.2021.04.026

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. U20A20308, 51977050, 52277024), Heilongjiang Provincial Natural Science Foundation of China (ZD2020E009), China Postdoctoral Science Foundation (Nos. 2021T140166, 2018M640303), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang (No. UNPYSCT-2020178, UNPYSCT-2020180).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by XZ, QC, CT, HL, CZ, and ZL. The first draft of the manuscript was written by XZ, and revised by TZ. QC and TZ supervised this work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tiandong Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chi, Q., Tang, C. et al. Achieving high-temperature resistance and excellent insulation property of epoxy by introducing triazine ring structure. J Mater Sci: Mater Electron 34, 638 (2023). https://doi.org/10.1007/s10854-023-10078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10078-6

Navigation