Skip to main content
Log in

Advancing electrical properties through hybridization: Synthesis, characterization, and doping of poly(m-aminophenol)/SnO2Nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study focuses on the synthesis of novel organic/inorganic hybrid materials by combining the conductive polymer poly (m-aminophenol) (PMAP) with the metal oxide SnO2, with the primary aim of enhancing the electrical properties of the resulting nanocomposite polymer. The nanocomposite is intricately crafted through in situ polymerization of m-aminophenol in the presence of SnO2, incorporating various loading rates (1%, 3%, 10%). Comprehensive characterization of the synthesized materials is conducted using analytical techniques including infrared spectroscopy (IR), UV–Visible spectroscopy, and X-ray diffraction (DRX), confirming the structural integrity of the hybrid materials. Notably, XRD analyses distinctly illustrate the successful integration of SnO2 into the polymer matrix. Conducting an extensive study on the doping of PMAP samples with varying concentrations of SnO2 (1%, 3%, and 10%) reveals a nuanced relationship between dopant concentration and electrical conductivity. The doped polymers exhibit a significant enhancement in electrical conductivity, directly correlating with the concentration of SnO2. This comprehensive exploration offers valuable insights into customizing the electrical properties of hybrid materials for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma AL, Saxena V, Annapoorni S, Malhotra BD (2001) Synthesis and characterization of a copolymer: poly(anilineco-fluoroaniline). J Appl Polym Sci 81:1460–1466

    Article  CAS  Google Scholar 

  2. Herrasti P, Recio FJ, Ocón P, Fatás E (2005) Effect of the polymer layers and bilayers on the corrosion behaviour of mild steel: comparison with polymers containing Zn microparticles. Prog Org Coat 54:285–291

    Article  CAS  Google Scholar 

  3. Ivanov S, Mokreva P, Tsakova V, Terlemezyan L (2003) Electrochemical and surface structural characterization of chemically and electrochemically synthesized polyaniline coating. Thin Solid Films 441:44–49

    Article  ADS  CAS  Google Scholar 

  4. Jeevananda T, Seetharamu S, Saravanan S, D’Souza L (2004) Synthesis and characterization of poly(anilineco- acrylonitrile) using organic benzoyl peroxide by inverted emulsion method. Synth Met 140:247–260

    Article  CAS  Google Scholar 

  5. Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG (2009) Influence of TiO2 and SiO2 on electrochemical, optical and electrical conductivity of polyaniline, poly(o-toluidine) and their co-polymer. Des Mon Polym 12:523–532

    Article  CAS  Google Scholar 

  6. Özdemir C, Kaplan Can H, Çolak N, Güner A (2006) Synthesis, characterization, and comparison of self-doped, doped, and undoped forms of polyaniline, poly(o-anisidine), and poly [aniline-co-(o-anisidine)]. J Appl Polym Sci 99:2182–2192

    Article  Google Scholar 

  7. Gui Li X, Xia Wang L, Rong Huang M, Quing LuY, Fang Zhu M, Menner A, Springer J (2001) Synthesis and characterization of pyrrole and anisidine copolymers. Polymer 42:6095–6103

    Article  Google Scholar 

  8. Roy BC, Gupta MD, Bhoumik L, Ray JK (2002) Spectroscopic investigation of water-soluble polyaniline copolymers. Synth Met 130:27–33

    Article  CAS  Google Scholar 

  9. Yalçınkaya S, Çolak N (2012) Synthesis and characterization of poly(Aniline-co-o-Aminoaniline). Des Monomers Polym 15:147–157

    Article  Google Scholar 

  10. Konopelnyk OI, Aksimentyeva OI, Tsizh BR, Chokhan MI (2007) Physical and technological properties of the sensor materials based on conjugated polyaminoarenes. Phys Chem Solid State 8:786–790

    CAS  Google Scholar 

  11. Remke SC, Bürgin TH, Ludvíková L, Heger D, Wenger OS, von Gunten U, Canonica S (2022) Water Res 213:118095

    Article  CAS  PubMed  Google Scholar 

  12. Erickson PR, Walpen N, Guerard JJ, Eustis SN, Arey JS, McNeill K (2015) Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution. J Phys Chem A 119(13):3233–3243

    Article  CAS  PubMed  Google Scholar 

  13. Long H, Chen T-S, Song J, Zhu S, Xu H-C (2022) Electrochemical aromatic C−H hydroxylation in continuous flow. Nat Commun 13:3945–3951

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson KW, Ikawa T, Tundel RE, Buchwald SL (2006) The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans. J Am Chem Soc 128:10694–10695

    Article  CAS  PubMed  Google Scholar 

  15. Xiong W, Shi Q, Liu WH (2022) Simple and practical conversion of benzoic acids to phenols at room temperature. J Am Chem Soc 144:15894–15902

    Article  CAS  PubMed  Google Scholar 

  16. Ivanov VD, Zhuzhel’skii DV, Malev VV (2008) Comparison of properties of aniline and o-aminophenol polymers obtained using hydrogen peroxide. Russ J Electrochem 44:1204–1211

    Article  CAS  Google Scholar 

  17. Bereket G, Duran B (2009) Anticorrosive properties of electrosynthesized poly(m-aminophenol) on copper from aqueous phenylphosphonic acid solution. Prog Org Coat 64:57–66

    Article  CAS  Google Scholar 

  18. Kar P, Pradhan NC, Adhikari B (2008) A novel route for the synthesis of processable conducting poly(m-aminophenol). Mater Chem Phys 111:59–64

    Article  CAS  Google Scholar 

  19. Kar P, Pradhan NC, Adhikari B (2010) Induced doping by sodium ion in poly(m-aminophenol) through the functional groups. Synth Met 160:1524–1529

    Article  CAS  Google Scholar 

  20. Kong Y, Zhou Y, Shan X, Jiang Y, Yao C (2011) Electropolymerization of m-aminophenol on expanded graphite and its electrochemical properties. Synth Met 161:2301–2305

    Article  CAS  Google Scholar 

  21. Zhang J, Shan D, Mu S (2007) A promising copolymer of aniline and m-aminophenol: chemical preparation, novel electric propertis and characterization. Polymer 48:1269–1275

    Article  CAS  Google Scholar 

  22. Kar P, Pradhan NC, Adhikari B (2010) Effect on structure, processability, and conductivity of poly(m-aminophenol) of the initial acidity/basicity of the polymerization medium. J Macromol Sci Part B 49:669–679

    Article  ADS  CAS  Google Scholar 

  23. Kar P, Behera AK, Adhikari B, Pradhan NC (2010) Optimization for the chemical synthesis of conducting poly (m-aminophenol) in HCl using ammonium persulfate. High Perform Polym 22:428–441

    Article  CAS  Google Scholar 

  24. Ebnalwaled AA, Yousef A, Gerges MK, Thabet A (2016) Synthesis of nano-polyimide for microelectronic applications. J Appl Chem Sci Int 6(1):18–30

    Google Scholar 

  25. Thabet A, Ebnalwaled AA (2017) Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. J Int Meas Conf (IMEKO) 110:78–83. Elsevier

    Google Scholar 

  26. Thabet A, Ebnalwaled AA (2018) Controlling on attraction forces of water droplets on surfaces of polypropylene nanocomposites coatings. Trans Electr Electron Mater 19(5):387–395

    Article  Google Scholar 

  27. Thabet A (2021) Emerging nanotechnology applications in electrical engineering. IGI Global, Publisher of Timely Knowledge. p 318. https://doi.org/10.4018/978-1-7998-8536-8. ISBN13: 9781799885368, ISBN10: 1799885364, EISBN13: 9781799885382, ISBN13 Softcover: 9781799885375

    Book  Google Scholar 

  28. Anderson A, Hunderi O, Granqvist (1980) J Appl Phys 57:75

    Google Scholar 

  29. Jarjayes O, Fries PH, Bidan G (1995) Synth Met 69:343

    Article  CAS  Google Scholar 

  30. Butterworth MD, Corradi R, Johal J, Lascelles SF, Maeda S, Armes SP (1995) J Colloid Interface Sci 174:510

    Article  ADS  CAS  Google Scholar 

  31. Kamat PV (2011) Dominance of metal oxides in the era of nanotechnology. J Phys Chem Lett 2:839–840

    Article  CAS  Google Scholar 

  32. Chen Z, Pan D, Li Z, Jiao Z, Wu M, Shek C-H, Wu CML, Lai JKL (2014) Recent advances in tin dioxide materials: Some developments in thin films, nanowires, and nanorods. Chem Rev 114:7442–7486

    Article  CAS  PubMed  Google Scholar 

  33. Baleh H, Bouazza A, Benhaoua C, Bassaid S, Dehbi A, Belfedal A (2021) Polym Sci A 63(6):872–878

    Article  CAS  Google Scholar 

  34. Daho B, Fontanesi C, Messori M, Dehbi A, Belfedal A (2019) J Semicond 53(12):1656–1664

    Article  ADS  Google Scholar 

  35. Bassaid S, Benhaoua C, Taleb M, Sahli M, Dehbi A (2021) Composites 63(3):1

    Google Scholar 

  36. Baleh H, Dehbi A, Bassaid S, Belfedal A, Alsalme A, Messori M (2023) J Polym Res 30(7):285

    Article  CAS  Google Scholar 

  37. Bouazza A, Bassaid S, Dehbi A, Guarnaccio A, D’Auria M (2023) Reaction kinetics. Mech Catal 136(3):1589–1605

    CAS  Google Scholar 

  38. Bouazza A, Bassaid S, Dehbi A, Hadj-Zoubir N, Alsalme A, Robert D (2023) Reaction kinetics. Mech Catal 136:1625–1641

    CAS  Google Scholar 

  39. Bekri I, Gherras H, Dehbi A et al (2023) Preparation and characterization of new soluble and thermally stable polyazomethine by polycondensation of thiophene-2,5-dicarboxaldehyde and ortho-tolidine for optoelectronics. Polym Sci Ser B

    Article  Google Scholar 

  40. Laoufi M, Yahiaoui A, Hachemaoui A et al (2022) Synthesis and characterization of PPDMB poly (pyrrole-co-3,5-dimethoxybenzaldehyde) and PPMB poly (pyrrole-co-2-methoxybenzaldehyde): a new copolymer for solar cells. Colloid Polym Sci 300:1139–1154

    Article  CAS  Google Scholar 

  41. Aris FE, Hachemaouia A, Yahiaoui A et al (2022) Synthesis, characterization, and microbial degradation behavior of hydrogel based on poly(ε-caprolactone) and methacrylic anhydride. Polym Sci Ser B 64:417–428

    Article  Google Scholar 

  42. Mouacher L, Yahiaoui A, Hachemaoui A et al (2021) Synthesis and characterization of conducting poly(2-aminothiazole)/modified-clay nanocomposites. Polym Sci Ser B 63:314–321

    Article  Google Scholar 

  43. Aziz M, Abbas SS, Baharom WR (2013) Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater Lett 91:31–34

    Article  CAS  Google Scholar 

  44. Tauc J, Meuth A, Non-Cryst J (1972) Solids 8–10:569

    Google Scholar 

  45. Bouabida NE, Hachemaoui A, Yahiaoui A, Gherras H, Belfedal A, Dehbi A, Mourad AH (2020) Polym Sci Ser B 62:163

    Article  CAS  Google Scholar 

  46. Thambidurai M, Shini F, Kim JY, Lee C, Dang C (2020) Mater Lett 274:128003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Researchers Supporting Project (RSP-2023R78), King Saud University, Riyadh, Saudi Arabia.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Dehbi.

Ethics declarations

Conflict of interest

They have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daho, B., Dehbi, A., Alsalme, A. et al. Advancing electrical properties through hybridization: Synthesis, characterization, and doping of poly(m-aminophenol)/SnO2Nanocomposites. J Polym Res 31, 50 (2024). https://doi.org/10.1007/s10965-024-03900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03900-0

Keywords

Navigation