Skip to main content
Log in

Effects of processing method on the structure and electrical performance of polypropylene containing intrinsic elastomers for cable insulation applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

With the increased worldwide awareness of sustainable development, the development of polypropylene (PP)-based insulation material is highly recommended. However, uncovering the processing-structure-property relationship of PP insulation materials for recyclable cables is still a long-standing issue. In this study, PP in-reactor alloys containing intrinsic elastomer were considered an important component to substitute crosslinked polyethylene. We studied the effects of processing methods on the phase morphology, crystalline structure, and electrical properties of PP in-reactor alloys. The lower cooling rate was conducive to constructing smaller rubber phase, and higher crystallinity with a small number of β crystals, which could form deep trap energy levels due to their reduced free volume in β crystals and boundaries among β crystals. The suitable thermal treatment temperature had a positive effect on eliminating defects in the interface and facilitating the perfection of PP crystals. As a result, PP films exhibited an enhanced breakdown strength. The exploration of the relationship between processing technology, microscopic structure, and macroscopic performance is expected to has significant guidance for the manufacture of PP-based recyclable cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mazzanti G, Marzinotto M (2013) Extruded cables for high-voltage direct-current transmission: advances in research and development. Wiley-IEEE Press, New York. https://ieeexplore.ieee.org/servlet/opac?bknumber=6558567

  2. Xiao M, Du BX (2016) Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt 1(1):34–42. https://doi.org/10.1049/hve.2016.0008

    Article  MathSciNet  Google Scholar 

  3. Zhou Y, Peng SM, Hu J, He JL (2017) Polymeric insulation materials for HVDC cables: Development, challenges and Future Perspective. IEEE Trans Dielectr Electr Insul 24(3):1308–1318. https://doi.org/10.1109/Tdei.2017.006205

    Article  CAS  Google Scholar 

  4. Wald D, Smedberg A (2008) Evolution of medium voltage cable technology in Europe. IEEE Electr Insul Mag 24(5):31–35. https://doi.org/10.1109/Mei.2008.4635659

    Article  Google Scholar 

  5. Vahedy V (2006) Polymer insulated high voltage cables. IEEE Electr Insul Mag 22(3):13–18. https://doi.org/10.1109/Mei.2006.1639025

    Article  Google Scholar 

  6. Huang X, Zhang J, Jiang P, Tanaka T (2019) Material progress toward recyclable insulation of power cables part 2: polypropylene-based thermoplastic materials. IEEE Electr Insul Mag 36(1):8–18. https://doi.org/10.1109/MEI.2020.8932973

    Article  ADS  Google Scholar 

  7. Maeno Y, Hirai N, Ohki Y, Tanaka T, Okashita M, Maeno T (2005) Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene. IEEE Trans Dielectr Electr Insul 12(1):90–97. https://doi.org/10.1109/Tdei.2005.1394019

    Article  CAS  Google Scholar 

  8. Hirai N, Minami R, Tanaka T, Ohki Y, Okashita M, Maeno T (2003) Chemical group in crosslinking byproducts responsible for charge trapping in polyethylene. IEEE Trans Dielectr Electr Insul 10(2):320–330. https://doi.org/10.1109/Tdei.2003.1194118

    Article  CAS  Google Scholar 

  9. Hussin N, Chen G (2012) Analysis of space charge formation in LDPE in the Presence of crosslinking byproducts. IEEE Trans Dielectr Electr Insul 19(1):126–133. https://doi.org/10.1109/Tdei.2012.6148510

    Article  CAS  Google Scholar 

  10. Yoshino K, Demura T, Kawahigashi M, Miyashita Y, Kurahashi K, Matsuda Y (2004) Application of a novel polypropylene to the insulation of an electric power cable. Electr Eng Jpn 146(1):18–26. https://doi.org/10.1002/eej.10210

    Article  Google Scholar 

  11. Hosier IL, Reaud S, Vaughan AS, Swingler SG (2008) Morphology, thermal, mechanical and electrical properties of propylene-based materials for cable applications. Conference record of the 2008 IEEE international symposium on electrical insulation pp. 502–505. https://doi.org/10.1109/ELINSL.2008.4570382

  12. Huang XY, Fan YY, Zhang J, Jiang PK (2017) Polypropylene based thermoplastic polymers for potential recyclable HVDC Cable Insulation Applications. IEEE Trans Dielectr Electr Insul 24(3):1446–1456. https://doi.org/10.1109/Tdei.2017.006230

    Article  CAS  Google Scholar 

  13. Ceres BV, Schultz JM (1984) Dependence of Electrical Breakdown on Spherulite size in Isotactic Polypropylene. J Appl Polym Sci 29(12):4183–4197. https://doi.org/10.1002/app.1984.070291248

    Article  CAS  Google Scholar 

  14. He J, Zhou Y (2018) Progress in eco-friendly high voltage cable insulation materials. 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM) pp. 11–16. https://doi.org/10.1109/ICPADM.2018.8401276

  15. Kim DW, Yoshino K, Inoue T, Abe M, Uchikawa N (1999) Influence of morphology on electrical properties of syndiotactic polypropylene compared with those of isotactic polypropylene. Japanese J Appl Phys Part 1-Regular Papers Short Notes Rev Papers 38(6a):3580–3584. https://doi.org/10.1143/Jjap.38.3580

    Article  CAS  Google Scholar 

  16. Kim DW, Yoshino K (2000) Morphological characteristics and electrical conduction in syndiotactic polypropylene. J Phys D-Appl Phys 33(4):464–471. https://doi.org/10.1088/0022-3727/33/4/321

    Article  ADS  CAS  Google Scholar 

  17. Kurahashi K, Matsuda Y, Ueda A, Demura T, Miyashita Y, Yoshino K (2002) The application of novel polypropylene to the insulation of electric power cable. IEEE/PES Trans Distribution Conf Exhibition. https://doi.org/10.1109/TDC.2002.1177662

    Article  Google Scholar 

  18. De Rosa C, Scoti M, Auriemma F, Ruiz de Ballesteros O, Talarico G, Malafronte A, Di Girolamo R (2018) Mechanical properties and morphology of propene–pentene isotactic copolymers. Macromolecules 51(8):3030–3040. https://doi.org/10.1021/acs.macromol.8b00362

    Article  ADS  CAS  Google Scholar 

  19. Hosier I, Cozzarini L, Vaughan A, Swingler S (2009) Propylene based systems for high voltage cable insulation applications. J Phys Conf Series, IOP Publishing.

  20. Zha JW, Wu YH, Wang SJ, Wu DH, Yan HD, Dang ZM (2016) Improvement of Space Charge suppression of polypropylene for potential application in HVDC cables. IEEE Trans Dielectr Electr Insul 23(4):2337–2343. https://doi.org/10.1109/Tdei.2016.005428

    Article  CAS  Google Scholar 

  21. Zhou Y, Hu J, Dang B, He JL (2016) Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride. J Phys D-Appl Phys 49(41). https://doi.org/10.1088/0022-3727/49/41/415301

    Article  CAS  Google Scholar 

  22. Zhang G, Nam C, Chung TCM, Petersson L, Hillborg H (2017) Polypropylene copolymer containing cross-linkable antioxidant moieties with Long-Term Stability under elevated temperature conditions. Macromolecules 50(18):7041–7051. https://doi.org/10.1021/acs.macromol.7b01235

    Article  ADS  CAS  Google Scholar 

  23. Zhang G, Li HX, Antensteiner M, Chung TCM (2015) Synthesis of functional polypropylene containing hindered phenol stabilizers and applications in Metallized Polymer Film Capacitors. Macromolecules 48(9):2925–2934. https://doi.org/10.1021/acs.macromol.5b00439

    Article  ADS  CAS  Google Scholar 

  24. Auriemma F, de Ballesteros OR, De Rosa C, Invigorito C (2011) Tailoring the Mechanical Properties of Isotactic Polypropylene by blending samples with different stereoregularity. Macromolecules 44(15):6026–6038. https://doi.org/10.1021/ma201420f

    Article  ADS  CAS  Google Scholar 

  25. Green CD, Vaughan AS, Stevens GC, Pye A, Sutton SJ, Geussens T, Fairhurst MJ (2015) Thermoplastic Cable Insulation comprising a blend of Isotactic Polypropylene and a propylene-ethylene Copolymer. IEEE Trans Dielectr Electr Insul 22(2):639–648. https://doi.org/10.1109/Tdei.2015.7076758

    Article  CAS  Google Scholar 

  26. Dang B, He J, Hu J, Zhou Y (2016) Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline – amorphous interface effect in blends. Polym Int 65(4):371–379. https://doi.org/10.1002/pi.5063

    Article  CAS  Google Scholar 

  27. Zhou Y, He JL, Hu J, Huang XY, Jiang PK (2015) Evaluation of Polypropylene/Polyolefin Elastomer Blends for potential recyclable HVDC Cable Insulation Applications. IEEE Trans Dielectr Electr Insul 22(2):673–681. https://doi.org/10.1109/Tdei.2015.7076762

    Article  CAS  Google Scholar 

  28. Zhou Y, Hu J, Dang B, He JL (2017) Effect of different nanoparticles on tuning Electrical properties of Polypropylene Nanocomposites. IEEE Trans Dielectr Electr Insul 24(3):1380–1389. https://doi.org/10.1109/Tdei.2017.006183

    Article  CAS  Google Scholar 

  29. Krentz T, Khani MM, Bell M, Benicewicz BC, Nelson JK, Zhao S, Hillborg H, Schadler LS (2017) Morphologically dependent alternating-current and direct‐current breakdown strength in silica–polypropylene nanocomposites. J Appl Polym Sci 134(1):44327. https://doi.org/10.1002/app.44347

    Article  CAS  Google Scholar 

  30. Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T (2008) Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Trans Dielectr Electr Insul 15(1):40–51. https://doi.org/10.1109/T-Dei.2008.4446735

    Article  CAS  Google Scholar 

  31. Jarvid M, Johansson A, Kroon R, Bjuggren JM, Wutzel H, Englund V, Gubanski S, Andersson MR, Müller C (2015) A New Application Area for fullerenes: Voltage stabilizers for Power Cable Insulation. Adv Mater 27(5):897–902. https://doi.org/10.1002/adma.201404306

    Article  CAS  PubMed  Google Scholar 

  32. Gao Y, Huang X, Min D, Li S, Jiang P (2018) Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: toward new generation of high voltage direct current cable insulation. ACS Sustain Chem Eng 7(1):513–525. https://doi.org/10.1021/acssuschemeng.8b04070

    Article  CAS  Google Scholar 

  33. Li ST, Min DM, Wang WW, Chen G (2016) Linking traps to Dielectric Breakdown through Charge Dynamics for Polymer nanocomposites. IEEE Trans Dielectr Electr Insul 23(5):2777–2785. https://doi.org/10.1109/Tdei.2016.006050

    Article  CAS  Google Scholar 

  34. Jiang P, Sun X, Huang Y, Bo J, Zhang J, Wu C (2017) Preparation of MgO/polypropylene insulation nanocomposites and their properties. High Volt Engergy 43(2):355–367. https://doi.org/10.13336/j.1003-6520.hve.20170123003

    Article  Google Scholar 

  35. Diao JC, Huang XY, Jia QC, Liu F, Jiang PK (2017) Thermoplastic Isotactic Polypropylene/Ethylene-Octene Polyolefin Copolymer Nanocomposite for Recyclable HVDC Cable Insulation. IEEE Trans Dielectr Electr Insul 24(3):1416–1429. https://doi.org/10.1109/Tdei.2017.006208

    Article  CAS  Google Scholar 

  36. Dang B, Li Q, Zhou Y, Hu J, He JL (2017) Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles. Compos Sci Technol 153:103–110. https://doi.org/10.1016/j.compscitech.2017.10.005

    Article  CAS  Google Scholar 

  37. Choi WJ, Kim SC (2004) Effects of talc orientation and non-isothermal crystallization rate on crystal orientation of polypropylene in injection-molded polypropylene/ethylene–propylene rubber/talc blends. Polymer 45(7):2393–2401. https://doi.org/10.1016/j.polymer.2004.01.058

    Article  CAS  Google Scholar 

  38. Hu J, Zhao XC, Xie JH, Liu Y, Sun SL (2022) Influence of organic Na-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites. J Polym Res 29(5). https://doi.org/10.1007/s10965-022-03047-w

  39. Hannay JH (1983) The Clausius-Mossotti equation: an alternative derivation. Eur J Phys 4:141–143. https://doi.org/10.1088/0143-0807/4/3/003

    Article  CAS  Google Scholar 

  40. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J 49(5):1057–1065. https://doi.org/10.1016/j.eurpolymj.2013.01.015

    Article  CAS  Google Scholar 

  41. Favaro MM, Branciforti MC, Bretas RES (2009) A X-ray study of β-Phase and molecular orientation in nucleated and non-nucleated injection molded polypropylene resins. Mater Research-Ibero-American J Mater 12(4):455–464. https://doi.org/10.1590/S1516-14392009000400014

    Article  CAS  Google Scholar 

  42. Du BX, Xu H, Li J, Li ZL (2016) Space charge behaviors of PP/POE/ZnO nanocomposites for HVDC cables. IEEE Trans Dielectr Electr Insul 23(5):3165–3174. https://doi.org/10.1109/Tdei.2016.7736882

    Article  CAS  Google Scholar 

  43. Xu RR, Du BX, Xiao M, Li J, Liu HL, Ran ZY, Xing JW (2021) Dielectric properties dependent on crystalline morphology of PP film for HVDC capacitors application. Polymer 213. https://doi.org/10.1016/j.polymer.2020.123204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of the Science and Technology Project of China Southern Power Grid Company Limited (KYKJXM20220013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Zhan.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Hou, S., Hui, B. et al. Effects of processing method on the structure and electrical performance of polypropylene containing intrinsic elastomers for cable insulation applications. J Polym Res 31, 37 (2024). https://doi.org/10.1007/s10965-024-03876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03876-x

Keywords

Navigation