Skip to main content

Advertisement

Log in

Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Silicone rubber (SR) composites are most widely used as thermal interface materials (TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride (h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum (0.39 K·cm2·W−1). Although the decreased bond line thickness (BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Razeeb, K. M.; Dalton, E.; Cross, G. L. W.; Robinson, A. J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21.

    CAS  Google Scholar 

  2. Swamy, M. C. K.; Satyanarayan. A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications. J. Electron. Mater. 2019, 48, 7623–7634.

    ADS  CAS  Google Scholar 

  3. Zhao, Y.; Zeng, X.; Ren, L.; Xia, X.; Zeng, X.; Zhou, J. Heat conduction of electrons and phonons in thermal interface materials. Mater. Chem. Front. 2021, 5, 5617–5638.

    CAS  Google Scholar 

  4. Li, J.; Liu, X.; Feng, Y.; Yin, J. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog. Polym. Sci. 2022, 126, 101505.

    CAS  Google Scholar 

  5. Huang, T.; Yang, F.; Wang, T.; Wang, J.; Li, Y.; Huang, J.; Chen, M.; Wu, L. Ladder- structured boron nitride nanosheet skeleton in flexible polymer films for superior thermal conductivity. Appl. Mater. Today 2022, 26, 101299.

    Google Scholar 

  6. Niu, H.; Guo, H.; Ren, Y.; Ren, L.; Lv, R.; Kang, L.; Bashir, A.; Bai, S. Spherical aggregated BN/AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow. Chem. Eng. J. 2022, 430, 133155.

    CAS  Google Scholar 

  7. Zhao, N.; Li, J.; Wang, W.; Gao, W.; Bai, H. Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano 2022, 16, 18959–18967.

    CAS  PubMed  Google Scholar 

  8. Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H. M.; Kang, F. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463.

    CAS  Google Scholar 

  9. Chaudhry, A. U.; Mabrouk, A. N.; Abdala, A. Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects. Sci. Technol. Adv. Mater. 2020, 21, 737–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, R.; Liu, Z.; Sun, Z.; He, X.; Lin, Q.; Xiang, Y.; Fang, X.; Li, S.; Fu, X.; Liu, Q.; Hu, S.; Ping Wong, C. A scalable highly thermal conductive silicone rubber composite with orientated graphite by pre-vulcanizing and multilayer stacking method. Compos. Part A: Appl. Sci. Manuf. 2022, 157, 106944.

    CAS  Google Scholar 

  11. Hu, Q.; Bai, X.; Zhang, C.; Zeng, X.; Huang, Z.; Li, J.; Li, J.; Zhang, Y. Oriented BN/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Compos. Part A: Appl. Sci. Manuf. 2022, 152, 106681.

    CAS  Google Scholar 

  12. Yin, Z.; Guo, J.; Jiang, X. Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method. Compos. Sci. Technol. 2021, 209, 108794.

    CAS  Google Scholar 

  13. Feng, C. P.; Wan, S. S.; Wu, W. C.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 2018, 167, 456–462.

    CAS  Google Scholar 

  14. Xue, Y.; Li, X.; Wang, H.; Zhao, F.; Zhang, D.; Chen, Y. Improvement in thermal conductivity of through-plane aligned boron nitride/silicone rubber composites. Mater. Des. 2019, 165, 107580.

    CAS  Google Scholar 

  15. Zhou, W. Y.; Qi, S. H.; Zhao, H. Z.; Liu, N. L. Thermally conductive silicone rubber reinforced with boron nitride particle. Polym. Compos. 2007, 28, 23–28.

    CAS  Google Scholar 

  16. Kong, S. M.; Mariatti, M.; Busfield, J. J. C. Effects of types of fillers and filler loading on the properties of silicone rubber composites. J. Reinf. Plast. Compos. 2011, 30, 1087–1096.

    ADS  CAS  Google Scholar 

  17. Li, S. J.; Li, J. C.; Ji, P. Z.; Zhang, W. F.; Lu, Y. L.; Zhang, L. Q. Bubble-templated construction of three-dimensional ceramic network for enhanced thermal conductivity of silicone rubber composites. Chinese J. Polym. Sci. 2021, 39, 789–795.

    CAS  Google Scholar 

  18. Zhang, J.; Li, C.; Yu, C.; Wang, X.; Li, Q.; Lu, H.; Zhang, Q.; Zhao, J.; Songfeng, E.; Hu, M.; Yao, Y. Large improvement of thermal transport and mechanical performance of polyvinyl alcohol composites based on interface enhanced by SiO2 nanoparticle-modified-hexagonal boron nitride. Compos. Sci. Technol. 2019, 169, 167–175.

    CAS  Google Scholar 

  19. Zhao, C.; Li, Y.; Liu, Y.; Xie, H.; Yu, W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Adv. Compos. Hybrid Mater. 2022, 6, 27.

    Google Scholar 

  20. Chen, Y.; Zhang, H.; Chen, J.; Guo, Y.; Jiang, P.; Gao, F.; Bao, H.; Huang, X. Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers. ACS Nano 2022, 16, 14323–14333.

    CAS  PubMed  Google Scholar 

  21. Guerra, V.; Wan, C.; McNally, T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog. Mater. Sci. 2019, 100, 170–186.

    CAS  Google Scholar 

  22. Rasul, M. G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 2021, 5, 56.

    CAS  Google Scholar 

  23. Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012.

    CAS  PubMed  Google Scholar 

  24. Yu, S.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: oriented conductive fillers for high kappa nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

    CAS  PubMed  Google Scholar 

  25. Khanum, K. K.; Jayaram, S. H. Improved thermal properties and erosion resistance of silicone composites with hexagonal boron nitride. IEEE Trans. Ind. Appl. 2022, 58, 6583–6590.

    CAS  Google Scholar 

  26. Qu, J.; Fan, L.; Mukerabigwi, J. F.; Liu, C.; Cao, Y. A silicon rubber composite with enhanced thermal conductivity and mechanical properties based on nanodiamond and boron nitride fillers. Polym. Compos. 2021, 42, 4390–4396.

    CAS  Google Scholar 

  27. Chen, Q.; Xi, B.; Zhang, J.; Yang, H.; Wang, X.; Chi, M. Dielectric properties and thermal conductivity of micro-BN-modified LSR used for high-voltage direct current cable accessories. J. Mater. Sci.: Mater. Electron. 2020, 31, 16583–16591.

    CAS  Google Scholar 

  28. Gu, J.; Meng, X.; Tang, Y.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. Part A: Appl. Sci. Manuf. 2017, 92, 27–32.

    CAS  Google Scholar 

  29. Kemaloglu, S.; Ozkoc, G.; Aytac, A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 2010, 499, 40–47.

    CAS  Google Scholar 

  30. Li, Y. T.; Liu, W. J.; Shen, F. X.; Zhang, G. D.; Gong, L. X.; Zhao, L.; Song, P.; Gao, J. F.; Tang, L. C. PProcessing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: a comparative studyP. Compos. Part B:Eng. 2022, 238, 109907.

    CAS  Google Scholar 

  31. Liu, P.; Li, L.; Wang, L.; Huang, T.; Yao, Y.; Xu, W. Effects of 2D boron nitride (BN) nanoplates filler on the thermal, electrical, mechanical and dielectric properties of high temperature vulcanized silicone rubber for composite insulators. J. Alloys Compd. 2011, 774, 396–404.

    Google Scholar 

  32. Zhang, P.; Yuan, P.; Jiang, X.; Zhai, S.; Zeng, J.; Xian, Y.; Qin, H.; Yang, D. A theoretical review on interfacial thermal transport at the nanoscale. Small 2018, 14, 1702769.

    Google Scholar 

  33. Chung, D. D. L. Performance of thermal interface materials. Small 2022, 18, 2200693.

    CAS  Google Scholar 

  34. Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 2016, 138, 040802.

    Google Scholar 

  35. Grujicic, M.; Zhao, C. L.; Dusel, E. C. The effect of thermal contact resistance on heat management in the electronic packaging. Appl. Surf. Sci. 2005, 246, 290–302.

    ADS  CAS  Google Scholar 

  36. Due, J.; Robinson, A. J. Reliability of thermal interface materials: a review. Appl. Therm. Eng. 2013, 50, 455–463.

    CAS  Google Scholar 

  37. Leong, C.-K.; Chung, D. D. L. Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon 2003, 41, 2459–2469.

    CAS  Google Scholar 

  38. Hu, K.; Chung, D. D. L. Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon 2011, 49, 1075–1086.

    CAS  Google Scholar 

  39. Goel, N.; Anoop, T. K.; Bhattacharya, A.; Cervantes, J. A.; Mongia, R. K.; Machiroutu, S. V.; Lin, H. L.; Huang, Y. C.; Fan, K. C.; Denq, B. L.; Liu, C. H.; Lin, C. H.; Tien, C. W.; Pan, J. H. Technical review of characterization methods for thermal interface materials (Tim). 2008 11thIntersociety Conference on Thermal and Thermomecha Phenomena in Electronic Systems 2008, 248–258.

  40. Chen, J.; Huang, X.; Sun, B.; Wang, Y.; Zhu, Y.; Jiang, P. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 2017, 9, 30909–30917.

    CAS  PubMed  Google Scholar 

  41. Du, X.; Yang, W.; Zhu, J.; Fu, L.; Li, D.; Zhou, L. Aligning diamond particles inside BN honeycomb for significantly improving thermal conductivity of epoxy composite. Compos. Sci. Technol. 2022, 222, 109370.

    CAS  Google Scholar 

  42. Zhu, Z.; Li, C.; Songfeng, E.; Xie, L.; Geng, R.; Lin, C. T.; Li, L.; Yao, Y. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 2019, 170, 93–100.

    CAS  Google Scholar 

  43. Li, Z.; Ju, D.; Han, L.; Dong, L. Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly(3-hydroxylbutyrate). Thermochim. Acta 2017, 652, 9–16.

    ADS  CAS  Google Scholar 

  44. Tanimoto, M.; Yamagata, T.; Miyata, K.; Ando, S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 2013, 5, 4374–4382.

    CAS  PubMed  Google Scholar 

  45. Zhang, X.; Zhang, J.; Xia, L.; Li, C.; Wang, J.; Xu, F.; Zhang, X.; Wu, H.; Guo, S. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 2017, 9, 22977–22984.

    CAS  PubMed  Google Scholar 

  46. Xie, Y.; Yu, Y.; Feng, Y.; Jiang, W.; Zhang, Z. Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Appl. Mater. Interfaces 2017, 9, 2995–3005.

    CAS  PubMed  Google Scholar 

  47. Zhang, F.; Feng, Y.; Qin, M.; Gao, L.; Li, Z.; Zhao, F.; Zhang, Z.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

    Google Scholar 

  48. He, H.; Peng, W.; Liu, J.; Chan, X. Y.; Liu, S.; Lu, L.; Le Ferrand, H. Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv. Mater. 2022, 34, e2205120.

    PubMed  Google Scholar 

  49. Guo, H.; Niu, H.; Zhao, H.; Kang, L.; Ren, Y.; Lv, R.; Ren, L.; Maqbool, M.; Bashir, A.; Bai, S. Highly anisotropic thermal conductivity of three-dimensional printed boron nitride-filled thermoplastic polyurethane composites: effects of size, orientation, viscosity, and voids. ACS Appl. Mater. Interfaces 2022, 14, 14568–14578.

    CAS  PubMed  Google Scholar 

  50. Prasher, R. S.; Shipley, J.; Prstic, S.; Koning, P.; Wang, J. L. Thermal resistance of particle laden polymeric thermal interface materials. ASME. J. Heat Transfer. 2003, 125, 1170–1177.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Sichuan Science and Technology Program (No. 2022YFH0090) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wu.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Han, SD., Wu, H. et al. Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials. Chin J Polym Sci 42, 352–363 (2024). https://doi.org/10.1007/s10118-023-3023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3023-2

Keywords

Navigation