Skip to main content
Log in

Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work aims to improve the thermal stability and flame retardancy of cotton fabrics treated just by a single SiO2, a single B2O3 and their binary composite sol–gel systems. Tetraethyl orthosilicate (TEOS) and tributyl borate were used as precursors. The sols were coated onto cotton fabrics via dipping-baking processes. Techniques including Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and vertical burning test (VBT) were used to investigate the surface functional groups, elemental compositions, crystal structures, surface morphologies, elemental contents, thermal stability and flame retardancy levels of original and sols-treated cotton fabrics, respectively. The results show that the sols converted gel coatings are successfully deposited on the cotton fabric surfaces. SiO2-B2O3 sol finishing cotton fabric shows the best flame retardancy. It shows the highest char residue rate (43.82%), the highest LOI (25.7%) and ΔLOI/Δm (7.0%/g), the lowest after-flame time (10.0 s) and after-glow time (0.0 s without a smoldering process), a relatively complete and continuous char residue after a VBT. The SiO2 and B2O3 sol–gel systems play more synergistic effects than competitive effects in flame retarding a cotton fabric. A SiO2 gel shows effects of a high melting point, a structural support and dimensional stability, while a B2O3 gel shows a fusing capability and a longer pyrolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Gao WW, Zhang GX, Zhang FX (2015) Enhancement of flame retardancy of cotton fabrics by grafting a novel organic phosphorous-based flame retardant. Cellulose 22:2787–2796. https://doi.org/10.1007/s10570-015-0641-z

    Article  CAS  Google Scholar 

  2. Zhang DQ, Williams BL, Shrestha SB, Nasir Z, Becher EM, Lofink BJ, Santos VH, Patel H, Peng XH, Sun LY (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  CAS  PubMed  Google Scholar 

  3. Silva-Santos MC, Oliveira MS, Giacomin AM, Laktim MC, Baruque-Ramos J (2017) Flammability on textile of business uniforms: use of natural fibers. Procedia Eng 200:148–154. https://doi.org/10.1016/j.proeng.2017.07.022

    Article  CAS  Google Scholar 

  4. Li YC, Schulz J, Mannen S, Delhom C, Condon B, Chang SC, Zammarano M, Grunlan JC (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337. https://doi.org/10.1021/nn100467e

    Article  CAS  PubMed  Google Scholar 

  5. Horrocks AR (2017) Flame Retardant finishes. In Textiles: Current Developments and Future Trends; Bahners T, Mittal K, Eds; Beverly: Scrivener Publishing LLC, MA, USA, 69–127. https://doi.org/10.1002/9781119426790.ch2

  6. Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: An overview. Polym Degrad Stab 106:138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012

    Article  CAS  Google Scholar 

  7. Periolatto M, Ferrero F (2015) Cotton and polyester surface modification by methacrylic silane and fluorinated alkoxysilane via sol-gel and UV-curing coupled process. Surf Coat Technol 271:165–173. https://doi.org/10.1016/j.surfcoat.2014.12.048

    Article  CAS  Google Scholar 

  8. Caschera D, Toro RG, Federici F, Riccucci C, Ingo GM, Gigli G, Cellulose BC (2015) Flame retardant properties of plasma pre-treated/diamond-like carbon (DLC) coated cotton fabrics. Cellulose 22:2797–2809. https://doi.org/10.1007/s10570-015-0661-8

    Article  CAS  Google Scholar 

  9. Davesne AL, Jimenez M, Samyn F, Bourbigot S (2021) Thin coatings for fire protection: An overview of the existing strategies, with an emphasis on layer-by-layer surface treatments and promising new solutions. Prog Org Coat 154. https://doi.org/10.1016/j.porgcoat.2021.106217

    Article  CAS  Google Scholar 

  10. Gaan S, Salimova V, Rupperet P, Ritter A (2011) Flame retardant functional textiles, in: Functional Textiles for Improved Performance, Protection and Health, N. Pan and G. Sun Eds, Cambridge: Woodhead Publishing Limited, UK, 98–130. https://doi.org/10.1533/9780857092878.98

  11. Perincek S, Uzgur AE, Duran K, Doğan A, Körlü AE, Bahtiyari IM (2009) Design parameter investigation of industrial size ultrasound textile treatment bath. Ultrason Sonochem 16(1):184–189. https://doi.org/10.1016/j.ultsonch.2008.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Jelil RA (2015) A review of low-temperature plasma treatment of textile materials. J Mater Sci 50:5913–5943. https://doi.org/10.1007/s10853-015-9152-4

    Article  CAS  Google Scholar 

  13. Carosioa F, Ghanadpour M, Alongi J, Wågberg L (2018) Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Appl Sci Pub 202(15):479–487. https://doi.org/10.1016/j.carbpol.2018.09.005

    Article  CAS  Google Scholar 

  14. Viscusi G, Liparoti S, Pantani R, Barra G, Gorrasi G (2022) A layer-by-layer approach based on APTES/Cloisite to produce novel and sustainable high performances materials based on hemp fiberboards. Polym Degrad Stab 198. https://doi.org/10.1016/j.polymdegradstab.2022.109892

    Article  CAS  Google Scholar 

  15. Bentis A, Boukhriss A, Gmouh S (2020) Flame-retardant and water-repellent coating on cotton fabric by titania-boron sol-gel method. J Sol-Gel Sci Technol 94:719–730. https://doi.org/10.1007/s10971-020-05224-z

    Article  CAS  Google Scholar 

  16. Ismail WNW (2016) Sol-gel technology for innovative fabric finishing-A Review. J Sol-Gel Sci Technol 78:698–707. https://doi.org/10.1007/s10971-016-4027-y

    Article  CAS  Google Scholar 

  17. Poli R, Colleoni C, Calvimontes A, Polášková H, Dutschk V, Rosace G (2015) Innovative sol-gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor. J Sol-Gel Sci Technol 74:151–160. https://doi.org/10.1007/s10971-014-3589-9

    Article  CAS  Google Scholar 

  18. Huang KS, Nien YH, Hsiao KC, Chang YS (2006) Application of DMEU/SiO2 gel solution in the antiwrinkle finishing of cotton fabrics. J Appl Polym Sci 102:4136–4143. https://doi.org/10.1002/app.24246

    Article  CAS  Google Scholar 

  19. Yuzer B, Guida M, Ciner F, Aktan B, Aydin MI, Meric S, Selcuk H (2016) A multifaceted aggregation and toxicity assessment study of sol–gel-based TiO2 nanoparticles during textile wastewater treatment. Desalin Water Treat 57(11):4966–4973. https://doi.org/10.1080/19443994.2014.1000387

    Article  CAS  Google Scholar 

  20. Cheng XW, Liang CX, Guan JP, Yang XH, Tang RC (2018) Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric. Appl Surf Sci 427:69–80. https://doi.org/10.1016/j.apsusc.2017.08.021

    Article  CAS  Google Scholar 

  21. Mahltig B, Textor T (2006) Combination of silica sol and dyes on textiles. J Sol-Gel Sci Technol 39:111–118. https://doi.org/10.1007/s10971-006-7744-9

    Article  CAS  Google Scholar 

  22. Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013) The surface modification of cellulose fibers to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20:277–289. https://doi.org/10.1007/s10570-012-9812-3

    Article  CAS  Google Scholar 

  23. Nozari B, Montazer M, Mahmoudi Rad M (2021) Stable ZnO/SiO2 nano coating on polyester for anti-bacterial, self-cleaning and flame retardant applications. Mater Chem Phys 267. https://doi.org/10.1016/j.matchemphys.2021.124674

    Article  CAS  Google Scholar 

  24. Alongi J, Ciobanu M, Malucelli G (2012) Sol-gel treatments on cotton fabrics for improving thermal and flame stability: Effect of the structure of the alkoxysilane precursor. Carbohyd Polym 87:627–635. https://doi.org/10.1016/j.carbpol.2011.08.036

    Article  CAS  Google Scholar 

  25. Alongi J, Malucelli G (2012) State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22:21805–21809. https://doi.org/10.1039/C2JM32513F

    Article  CAS  Google Scholar 

  26. Alongi J, Ciobanu M, Tata J, Carosio F, Malucelli G (2011) Thermal stability and flame retardancy of polyester, cotton, and relative blend textile fabrics subjected to sol-gel treatments. J Appl Polym Sci 119:1961–1969. https://doi.org/10.1002/app.32954

    Article  CAS  Google Scholar 

  27. Ferrero F, Periolatto M (2013) Application of fluorinated compounds to cotton fabrics via sol-gel. Appl Surf Sci 275:201–207. https://doi.org/10.1016/j.apsusc.2013.01.001

    Article  CAS  Google Scholar 

  28. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polym Degrad Stab 96(3):377–392. https://doi.org/10.1016/j.polymdegradstab.2010.03.036

    Article  CAS  Google Scholar 

  29. Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym Degrad Stab 96:483–490. https://doi.org/10.1016/j.polymdegradstab.2011.01.013

    Article  CAS  Google Scholar 

  30. Fang YC, Sun WH, Li JW, Liu HL, Liu XH (2021) Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int J Biol Macromol 175:140–146. https://doi.org/10.1016/j.ijbiomac.2021.02.023

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, Liang ZS, Li R, Huang D, Ren XH (2016) Flame-retardant treatment of cotton fabric with organophosphorus derivative containing nitrogen and silicon. J Therm Anal Calorim 128(2):653–660. https://doi.org/10.1007/s10973-016-5949-x

    Article  CAS  Google Scholar 

  32. Zhu WJ, Hao SS, Yang MY, Cheng BW, Zhang JM (2020) A synergistic flame retardant of glycosyl cross-linking boron acid and ammonium salt of phytic acid to enhance durable flame retardancy of cotton fabrics. Cellulose 27:9699–9710. https://doi.org/10.1007/s10570-020-03417-x

    Article  CAS  Google Scholar 

  33. Xie KL, Gao AQ, Zhang YS (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohyd Polym 98(1):706–710. https://doi.org/10.1016/j.carbpol.2013.06.014

    Article  CAS  Google Scholar 

  34. Cromwell B, Levenson A, Levine M (2020) Thermogravimetric analysis of aromatic boronic acids for potential flame retardant applications. Thermochim Acta 683. https://doi.org/10.1016/j.tca.2019.178476

    Article  CAS  Google Scholar 

  35. LeVan SL, Tran HC (1990) The role of boron in flame-retardant treatments. First International Conference on Wood Protection With Diffusible Preservatives 1990.https://srs.fs.usda.gov/pubs/5831

  36. Chan SY, Si L, Lee KI, Ng PF, Chen L, Yu B, Hu Y, Yuen RK (2018) A novel boron-nitrogen intumescent flame retardant coating on cotton with improved washing durability. Cellulose 25(1):843–857. https://doi.org/10.1007/s10570-017-1577-2

    Article  CAS  Google Scholar 

  37. Yang S, Zhang QX, Hu YF (2016) Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym Degrad Stab 133:358–366. https://doi.org/10.1016/j.polymdegradstab.2016.09.023

    Article  CAS  Google Scholar 

  38. Cheng XW, Wu YX, Huang YT, Jiang JR, Xu JT, Guan JP (2020) Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk. React Funct Polym 156. https://doi.org/10.1016/j.reactfunctpolym.2020.104731

    Article  CAS  Google Scholar 

  39. Zhang QH, Zhang W, Huang JY, Lai YK, Xing TL, Chen GQ (2015) Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Mater Des 85:796–799. https://doi.org/10.1016/j.matdes.2015.07.163

    Article  CAS  Google Scholar 

  40. Zhang QH, Chen GQ, Xing TL (2017) Silk flame retardant finish by ternary silica sol containing boron and nitrogen. Appl Surf Sci 421:52–60. https://doi.org/10.1016/j.apsusc.2017.01.283

    Article  CAS  Google Scholar 

  41. Li G, You F, Zhou ST, Wang ZH, Li D, Zhang XF, Zhou C, Zhuang CH, Zhao YP (2022) Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polym Degrad Stab 202. https://doi.org/10.1016/j.polymdegradstab.2022.110011

    Article  CAS  Google Scholar 

  42. Li D, Wang Z, Zhu Y, You F, Zhou S, Li G, Zhang XF, Zhou C (2022) Synergistically improved flame retardancy of the cotton fabric finished by silica-coupling agent-zinc borate hybrid sol. J Ind Text 51(5S):8297S-8322S. https://doi.org/10.1177/15280837211028800

    Article  CAS  Google Scholar 

  43. Kumar B (1984) Sol-gel processing of SiO2-B2O3 glasses. Mater Res Bull 19(3):331–338. https://doi.org/10.1016/0025-5408(84)90175-2

    Article  CAS  Google Scholar 

  44. Villegas MA, Navarro JM (1988) Characterization of B2O3-SiO2 glasses prepared via sol-gel. J Mater Sci 23(7):2464–2478. https://doi.org/10.1007/BF01111904

    Article  CAS  Google Scholar 

  45. Villegas MA, Aparicio M, Durán A (1997) Thick sol-gel coatings based on the B2O3-SiO2 system. J Non-Cryst Solids 218:146–150. https://doi.org/10.1016/S0022-3093(97)00073-2

    Article  CAS  Google Scholar 

  46. Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohyd Polym 58(4):417–420. https://doi.org/10.1016/j.carbpol.2004.08.005

    Article  CAS  Google Scholar 

  47. Zhang QH, Gu JL, Chen GQ, Xing TL (2016) Durable flame retardant finish for silk fabric using boron hybrid silica sol. Appl Surf Sci 387:446–453. https://doi.org/10.1016/j.apsusc.2016.06.119

    Article  CAS  Google Scholar 

  48. Moharram MA, Abou El Nasr TZ, Hakeem NA (1981) X-Ray diffraction and infrared studies on the effect of thermal treatments on cotton celluloses I and II. J Polym Sci Polym Lett Edition 19(4):183–187. https://doi.org/10.1002/pol.1981.130190405

    Article  CAS  Google Scholar 

  49. Przekop R, Kirszensztejn P (2014) Porous xerogel systems B2O3-Al2O3 obtained by the sol-gel method. J Non-Cryst Solids 402:128–134. https://doi.org/10.1016/j.jnoncrysol.2014.05.027

    Article  CAS  Google Scholar 

  50. Li SQ, Tang RC, Yu CB (2022) Flame retardant treatment of jute fabric with chitosan and sodium alginate. Polym Degrad Stab 196. https://doi.org/10.1016/j.polymdegradstab.2022.109826

    Article  CAS  Google Scholar 

  51. Xu WZ, Zhong D, Chen R, Cheng ZH, Qiao MX (2021) Boron phenolic resin/silica sol coating gives rigid polyurethane foam excellent and long-lasting flame-retardant properties. Polym Adv Technol 32(10):4029–4040. https://doi.org/10.1002/pat.5408

    Article  CAS  Google Scholar 

  52. Ma J, Li W, Fu GQ, Zhu MY (2021) Effect of B2O3 on the melting temperature and viscosity of CaO-SiO2-MgO-Al2O3-TiO2-Cr2O3 slag. J Sustain Metallurgy 7:1190–1199. https://doi.org/10.1007/s40831-021-00413-8

    Article  Google Scholar 

Download references

Acknowledgements

The study is financially supported by the National Natural Science Foundation of China (Grant No. 51376089 and 50906039) and the 2019 Key Project of The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA520007, A Class).

Funding

National Natural Science Foundation of China, No. 51376089, Fei YOU, No. 50906039, Fei YOU.

Author information

Authors and Affiliations

Authors

Contributions

Chang Zhou: Conceptualization, Methodology, Formal analysis, Writing-original draft. Fei You: Supervision, Project administration, Funding acquisition. Songtao Zhou: Conceptualization, Methodology, Writing-review & editing. Zhenhua Wang: Investigation, Software, Data curation. Dan Li: Investigation, Software, Data curation. Gang Li: Resources, Visualization. Xuefeng Zhang: Resources, Visualization. Yu Pan: Investigation, Validation. Junqi Wang: Investigation, Validation. Jing Ma: Investigation, Validation.

Corresponding author

Correspondence to Fei You.

Ethics declarations

Conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Zhou, S., You, F. et al. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J Polym Res 30, 437 (2023). https://doi.org/10.1007/s10965-023-03812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03812-5

Keywords

Navigation