Skip to main content
Log in

Enhancement of mechanical properties of epoxy resin matrix adhesives by high-performance fillers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study aims to prepare functional fillers using isophorone diisocyanate (IPDI), amine-terminated butadiene acrylonitrile (ATBN), and graphene oxide (GO) to improve the performance of epoxy resin (EP) composite materials by enhancing filler dispersion and toughening. Unexpected results were obtained during the experimental and testing phases, achieving multiple bonding mechanisms. Successful grafting of IPDI and ATBN onto GO was confirmed using TEM, FT-IR, and XPS. The prepared composites underwent T-peel, shear, tensile, and impact testing. Compared to pure EP, the T-peel strength increased by 579%, the shear strength increased by 99%, and Al elements were detected in the T-peel samples. The tensile strength increased by 134%, and the impact strength increased by 65%, with an analysis of the impact morphology to explore the mechanism of IPDI and ATBN enhancement. Additionally, the dynamic mechanical performance of EP and its composites was tested, and various forms of Tg were analyzed. This functional filler can be applied to various resin matrices and effectively improve their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The characterization data are available upon request from the authors.

References

  1. Kanari K et al (2022) Interlaminar fracture toughness of carbon fibre composites with electrospun nanofibrous interleaves of polystyrene and cellulose nanocrystals. J Mater Sci 57(45):21080

    Article  CAS  Google Scholar 

  2. Attar A et al (2022) Fabrication, characterization, TD-DFT, optical and electrical properties of poly (aniline-co-para nitroaniline)/ZrO2 composite for solar cell applications. J Ind Eng Chem 109:230

    Article  CAS  Google Scholar 

  3. Kim TG et al (2021) Dispersibility-tailored conductive epoxy nanocomposites with silica nanoparticle-embedded silver nanowires. Polym Test 96:107111

    Article  CAS  Google Scholar 

  4. Zhao G et al (2020) The tribological behaviors of core-shell n-octadecane@TiO2/epoxy composites. Polym Compos 41(11):4872

    Article  CAS  Google Scholar 

  5. Okoroanyanwu U et al (2021) Rapid preparation and electrochemical energy storage applications of silicon carbide and silicon oxycarbide ceramic/carbon nanocomposites derived via flash photothermal pyrolysis of organosilicon preceramic polymers. Chem Mater 33(2):678

    Article  CAS  Google Scholar 

  6. Armstrong M et al (2020) Composite materials made from glass microballoons and ceramic nanofibers for use as catalysts and catalyst supports. J Mater Sci 55(27):12940

    Article  CAS  Google Scholar 

  7. Wang B et al (2019) Multi-walled carbon nanotube-reinforced boron carbide matrix composites fabricated via ultra-high-pressure sintering. J Mater Sci 54(16):11084

    Article  CAS  Google Scholar 

  8. Chanda A et al (2022) Fiber alignment and mode-mixity effects on fracture behavior of CNF/epoxy nanocomposite adhesive joints. Compos Part B Eng 247:110341

    Article  CAS  Google Scholar 

  9. Cakir MV, Kinay D (2021) MWCNT, nano-silica, and nano-clay additives effects on adhesion performance of dissimilar materials bonded joints. Polym Compos 42(11):5880

    Article  CAS  Google Scholar 

  10. Sanghvi MR et al (2022) Performance of various fillers in adhesives applications: a review. Polym Bull (Berlin) 79(12):10491

    Article  CAS  Google Scholar 

  11. Wang Z et al (2018) Graphene nanoplatelets/epoxy composites with excellent shear properties for construction adhesives. Compos Part B Eng 152:311

    Article  CAS  Google Scholar 

  12. Ge Y et al (2022) Super-flexibility and high-temperature adhesion of epoxy structural adhesives endowed by homogeneous rigid-flexible crosslinking networks. Ind Eng Chem Res 61(30):10990

    Article  CAS  Google Scholar 

  13. Gonçalves FAMM et al (2022) Influence of fillers on epoxy resins properties: a review. J Mater Sci 57(32):15183

    Article  Google Scholar 

  14. Ahmadi Z (2019) Nanostructured epoxy adhesives: A review. Prog Org Coat 135:449

    Article  CAS  Google Scholar 

  15. Chen Y et al (2022) High-epoxy value bio-based epoxy emulsion reinforced interfacial properties of carbon fiber/epoxy composites. J Appl Polym Sci 139(13):51855

    Article  CAS  Google Scholar 

  16. Amirbeygi H et al (2019) Reinforcing effects of aminosilane-functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites. J Appl Polym Sci 136(18):47410

    Article  Google Scholar 

  17. Mostovoy AS et al (2020) Reinforcing effects of aminosilane-functionalized h-BN on the physicochemical and mechanical behaviors of epoxy nanocomposites. Sci Rep 10(1):10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y et al (2021) A simple way to synthesize a nano-scale stable epoxy emulsion for sizing CF/epoxy composites. New J Chem 45(48):22860

    Article  CAS  Google Scholar 

  19. Luo J et al (2023) Simultaneous optimization of the thermal conductivity and mechanical properties of epoxy resin composites through PES and AgNP functionalized BNs. Compos Part B Eng 248:110373

    Article  CAS  Google Scholar 

  20. Long J et al (2022) Enhancement of mechanical and bond properties of epoxy adhesives modified by SiO2 nanoparticles with active groups. Polymers 14(10):2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lv C et al (2021) Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment. Sci China Technol Sci 64(2):423

    Article  CAS  Google Scholar 

  22. Chauhan K, Tiwari RK (2020) Study of thermomechanical properties of glycidoxypropyl trimethoxy silane functionalized nanosilica/amine terminated poly (butadiene-co-acrylonitrile) rubber modified novolac epoxy composites for high performance applications. J Polym Res 27(10):319

    Article  CAS  Google Scholar 

  23. Gironès J et al (2007) Blocked isocyanates as coupling agents for cellulose-based composites. Carbohyd Polym 68(3):537

    Article  Google Scholar 

  24. Coutinho FMB, Rocha MCG (1991) Kinetic study of the reactions between hydroxylated polybutadiene and isocyanates in chlorobenzene—IV. Reactions with tolylene diisocyanate, 3-isocyanatomethyl-3, 5, 5-trimethylcyclohexyl isocyanate and hexamethylene diisocyanate. Eur Polym J 27(2):213

    Article  CAS  Google Scholar 

  25. Hu G et al (2018) Improvement of graphene oxide/epoxy resin adhesive properties through interface modification. High Perform Polym 31(3):341

    Article  Google Scholar 

  26. Xu H et al (2020) High thermal conductivity EP adhesive based on the GO/EP interface optimized by TDI. Polym Adv Technol 31(6):1356

    Article  CAS  Google Scholar 

  27. Bagherzadeh A et al (2020) Investigating mechanical and bonding properties of micro/nano filler containing epoxy adhesives for anchoring steel bar in concrete. Construct Build Mater 240:117979

    Article  CAS  Google Scholar 

  28. Aliakbari M et al (2019) Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Prog Org Coat 133:376

    Article  CAS  Google Scholar 

  29. Lin P et al (2015) Simultaneously functionalization and reduction of graphene oxide containing isocyanate groups. Appl Surf Sci 324:784

    Article  CAS  Google Scholar 

  30. Zhang Y et al (2018) Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos Part A Appl Sci Manuf 109:498

    Article  CAS  Google Scholar 

  31. Basak GC et al (2012) The role of tackifiers on the auto-adhesion behavior of EPDM rubber. J Mater Sci 47(7):3166

    Article  CAS  Google Scholar 

  32. Weiss H (1995) Adhesion of advanced overlay coatings: mechanisms and quantitative assessment. Surf Coat Technol 71(2):201

    Article  CAS  Google Scholar 

  33. Khraponichev K et al (2021) Effect of rapid manufacturing on the performance of carbon fibre epoxy polymers. J Mater Sci 56(10):6188

    Article  CAS  Google Scholar 

  34. Derakhshankhah H et al (2020) Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. J Mater Sci Mater Electron 31(14):10947

    Article  CAS  Google Scholar 

  35. Ochi M et al (1989) Effect of the introduction of methoxy branches on low-temperature relaxations and fracture toughness of epoxide resins. Polymer 30(6):1079

    Article  CAS  Google Scholar 

  36. da Silva LFM et al (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82(11):1091

    Article  Google Scholar 

  37. Kenyon AS, Nielsen LE (1969) Characterization of network structure of epoxy resins by dynamic mechanical and liquid swelling tests. J Macromol Sci Part A - Chem 3(2):275

    Article  CAS  Google Scholar 

  38. Tobolsky AV, Callinan TD (1960) Properties and structure of polymers. J Electrochem Soc 107(10):243C

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the support of the National Natural Science Foundation of China (No. 52107014); Natural Science Foundation of Heilongjiang Province of China (No. LH2021E079) and China Postdoctoral Science Foundation (2022M710981). The authors are grateful to all the testing technicians for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

Hang Xu: Conceptualization, Data curation, Investigation, Writing-original draft. Xiaorui Zhang: Project administration, Writing-review & editing. Yating Yu: Writing-review & editing. Yang Yu: Software, Supervision. Zhou Yang: Methodology, Test. Xingsong Zhu: Methodology, Test. Ling Weng: Writing-review & editing, Investigation, Supervision.

Corresponding authors

Correspondence to Xiaorui Zhang or Ling Weng.

Ethics declarations

Conflicts of interest or competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 648 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, X., Yu, Y. et al. Enhancement of mechanical properties of epoxy resin matrix adhesives by high-performance fillers. J Polym Res 30, 373 (2023). https://doi.org/10.1007/s10965-023-03755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03755-x

Keywords

Navigation