Skip to main content
Log in

Antimicrobial property of polyvinyl alcohol films containing extracts of Lawsonia inermis and Tamarindus indica

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We discuss here the preparation, characterization and antimicrobial properties of polyvinyl alcohol (PVA) based polymer films containing medicinally important plant extracts of Lawsonia inermis (henna) and Tamarindus indica (tamarind). The polymer films are prepared using a simple solution casting technique with concomitant heating at 42 °C. The ultraviolet-visible absorption spectrum and Fourier transform infrared spectroscopy (FTIR) of plant extracts confirm the presence of bioactive compounds, such as, 2-hydroxy, 1,4-naphthoquinone (lawsone) in henna extract and tannins, tartaric acid and reducing sugars in tamarind extract, respectively. FTIR analysis of the films confirms the presence of hydrogen bonding between PVA and tamarind phytochemicals in PVA-tamarind films. The surface topography and the average surface roughness analysis using an atomic force microscopy show that tamarind based polymer films have a lower surface roughness, due to a better interaction between PVA and tamarind phytochemicals, than that in henna based polymer films. Phase contrast microscopy images confirm the absence of polymer aggregation or pull-out in PVA-tamarind films, whereas, phase contrast microscopy images confirming the presence of such aggregation in PVA-henna films. Further, the thermal stability of the polymer films containing plant extract is studied in the temperature range of 30-250 °C. The antimicrobial activity of the films was studied using Kirby-Bauer Disc Diffusion method and the polymer films containing tamarind extract are found to exhibit antimicrobial activity against both E. coli and S. aureus. Quantitative analysis of the antimicrobial property of polymer films containing tamarind extract was carried-out using turbidimetry which further corroborates the antimicrobial property of these films. Thus, PVA-tamarind based films are promising candidates for antimicrobial applications, such as, in wound dressing as a ready to use bandage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available with the corresponding author.

References

  1. Kebede T, Gadisa E, Tufa A (2021) Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 16:e0249253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Monte J, Abreu AC, Borges A, Simoes LC, Simoes M (2014) Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 3:473–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jadhav DY, Sahoo AK, Ghosh JS, Ranveer RC, Mali AM (2010) Phytochemical detection and in vitro evaluation of tamarind fruit pulp for potential antimicrobial activity. Int J Trop Med 5:68–72

    Article  Google Scholar 

  4. Simoes M, Bennett RN, Rosa EAS (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26:746–757

    Article  CAS  PubMed  Google Scholar 

  5. Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF (2019) Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control 8:118

    Article  PubMed  PubMed Central  Google Scholar 

  6. Godstime CO, Felix OE, Augustina OJ, Christopher OE (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – A review. J Pharm Chem Biol Sci 2:77–85

    Google Scholar 

  7. Rajkumar SRJ, Nadar MSAM, Selvakumar PM (2018) Plant-derived compounds for wound healing- A review. Organic & Medicinal Chem IJ 5:555653

    Google Scholar 

  8. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonca AG et al (2018) Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 127:130–141

    Article  CAS  PubMed  Google Scholar 

  9. Thangapazham RL, Sharad S, Maheshwari RK (2016) Phytochemicals in wound healing. Adv Wound Care (New Rochelle) 5:230–241

    Article  PubMed  Google Scholar 

  10. Demilew W, Adinew GM, Asrade S (2018) Evaluation of the wound healing activity of the crude extract of leaves of Acanthus polystachyus Delile (Acanthaceae). Evid-based Complement Altern Med 2018:1–9

    Article  Google Scholar 

  11. Gunes OC, Albayrak AZ (2021) Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym Bull 78:6409–6428

    Article  CAS  Google Scholar 

  12. Pan Z, Ye H, Wu D (2021) Recent advances on polymeric hydrogels as wound dressings. APL Bioengineering 5:011504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ilenghoven D, Chan CY, Kamal WSRWA, Yussof SJM, Ibrahim S (2017) A review of wound dressing practices. Clin Dermatol J 2:000133

    Google Scholar 

  14. Savencu I, Iurian S, Porfire A, Bogdan C, Tomuta I (2021) Review of advances in polymeric wound dressing films. React Funct Polym 168:105059

    Article  CAS  Google Scholar 

  15. Dhivya S, Padma VV, Santhini E (2015) Wound dressings – a review. BioMedicine 5:24–28

    Article  Google Scholar 

  16. Radoor S, Karayil J, Jayakumar A, Siengchin S, Parameswaranpillai J (2021) A low cost and eco-friendly membrane from polyvinyl alcohol, chitosan and honey: synthesis, characterization and antibacterial property. J Polym Res 28:82

    Article  CAS  Google Scholar 

  17. Sharma A, Khanna S, Kaur G, Singh I (2021) Medicinal plants and their components for wound healing applications. Future J Pharm Sci 7:53

    Article  Google Scholar 

  18. Ly HT, Nguyen MTP, Nguyen TKO, Bui TPQ, Ke X et al (2020) Phytochemical analysis and wound-healing activity of Noni (Morinda Citrifolia) leaf extract. J Herbs Spices Med Plants 26:379–393

    Article  CAS  Google Scholar 

  19. Aslam MS, Ahmad MS, Riaz H, Raza SA, Hussain S et al (2018) Role of flavonoids as wound healing agent. Phytochemicals: IntechOpen

  20. Kim J, Lee CM, Kim SG (2019) Phytochemical analysis and wound healing potential of ethanol extract of sea mustard and sea mustard sporophyll. Biomed Sci Lett 25:313–320

    Article  Google Scholar 

  21. Nejjari R, Benabbes M, Amrani M, Meddah B, Bouatia M et al (2019) Phytochemical screening and wound healing activity of Telephium imperati (L.) in rats. S Afr J Bot 123:147–151

    Article  CAS  Google Scholar 

  22. Shah A, Nik SA (2017) The role of phytochemicals in the inflammatory phase of wound healing. Int J Mol Sci 18:1068

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adeonipekun PA, Adeniyi TA, Aminu SO (2014) Investigating the phytochemicals and antimicrobial activities of shoot and root of Pycreus smithianus (Ridl.) C. B. Clarke (Family Cyperaceae). J Botany 2014:1–5

    Article  Google Scholar 

  24. Hijji YM, Barare B, Zhang Y (2012) Lawsone (2-hydroxy-1,4-naphthoquinone) as a sensitive cyanide and acetate sensor. Sens Actuators B Chem 169:106–112

    Article  CAS  Google Scholar 

  25. Kulkarni S, Kale V, Velankar K (2018) To study the photodynamic antimicrobial activity of Henna extract and preparation of topical gel formulation. Int J Phytopharm 7:242–252

    Article  Google Scholar 

  26. Marzec A, Szadkowski B (2019) Improved aging stability of ethylene-norbornene composites filled with lawsone-based hybrid pigment. Polymers 11:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zulkifli F, Ali N, Yusof MSM, Khairul WM, Rahamathullah R et al (2017) The effect of concentration of Lawsonia inermis as a corrosion inhibitor for aluminum alloy in seawater. Adv Phys Chem 2017:1–12

    Article  Google Scholar 

  28. Doughari JH (2006) Antimicrobial activity of Tamarindus indica Linn. Trop J Pharm Res 5:597–603

    Google Scholar 

  29. Patra AK (2012) An overview of antimicrobial properties of different classes of phytochemicals. Dietary Phytochemicals and Microbes: Springer, Dordrecht. pp. 1–32

  30. Nwodo UU, Obiiyeke GE, Chigor VN, Okoh AI (2011) Assessment of Tamarindus indica extracts for antibacterial activity. Int J Mol Sci 12:6385–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gumgumjee NM, Khedr A, Hajar AS (2012) Antimicrobial activities and chemical properties of Tamarindus indica L. leaves extract. Afr J Microbiol Res 6:6172–6181

    Article  Google Scholar 

  32. Obulesu M, Bhattacharya S (2011) Color changes of tamarind (Tamarindus indica L.) pulp during fruit development, ripening, and storage. Int J Food Prop 14:538–549

    Article  Google Scholar 

  33. Kaolaor A, Phunpee S, Ruktanonchai UR, Suwantong O (2019) Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. J Polym Res 26:43

    Article  Google Scholar 

  34. Gajra B, Pandya SS, Vidyasagar G, Rabari H, Dedania RR et al (2012) Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: A review. J Int Pharm Res 4:20–26

    CAS  Google Scholar 

  35. Kader KAMAE, Hamied SFA (2002) Preparation of poly(vinyl alcohol) films with promising physical properties in comparison with commercial polyethylene film. J Appl Polym Sci 86:1219–1226

    Article  Google Scholar 

  36. Halima NB (2016) Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823

    Article  Google Scholar 

  37. Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl Alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132

    Article  CAS  Google Scholar 

  38. Awada H, Daneault C (2015) Chemical modification of poly(vinyl alcohol) in water. Appl Sci 5:840–850

    Article  CAS  Google Scholar 

  39. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548

    Article  CAS  Google Scholar 

  40. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26:223

    Article  CAS  Google Scholar 

  41. Mohdy HLAE (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20:177

    Article  Google Scholar 

  42. Hiremani VD, Anandalli MH, Gasti T, Dixit S, Bayannavar PK et al (2021) Dominant nature of 7-hydroxy 4-methyl coumarin dye on thermal, fluorescence and antimicrobial properties of PVA/OMS blend films. J Polym Res 28:353

    Article  CAS  Google Scholar 

  43. Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SKK et al (2016) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym Plast Technol Eng 55:231–241

    Article  CAS  Google Scholar 

  44. Choo K, Ching YC, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suganthi S, Vignesh S, Sundar JK, Raj V (2020) Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl Water Sci 10:100

    Article  CAS  Google Scholar 

  46. Wu Z, Wu J, Peng T, Li Y, Lin D et al (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers 9:102

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sapalidis AA, Katsaros FK, Romanos GE, Kakizis NK, Kanellopoulos NK (2007) Preparation and characterization of novel poly-(vinyl alcohol)–Zostera flakes composites for packaging applications. Compos Part B 38:398–404

  48. Kemme M, Wieland RH (2018) Quantitative assessment of antimicrobial activity of PLGA films loaded with 4-Hexylresorcinol. J Funct Biomater 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  50. Lourenco FR, Pinto TDJA (2011) Antibiotic microbial assay using kinetic-reading microplate system. Braz J Pharm Sci 47:573–584

    Article  CAS  Google Scholar 

  51. Vieira DCM, Fiuza TFM, Salgado HRN (2014) Development and validation of a rapid turbidimetric assay to determine the potency of Cefuroxime Sodium in powder for injection. Pathogens 3:656–666

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li RC, Nix DE, Schentag JJ (1993) New turbidimetric assay for quantitation of viable bacterial densities. Antimicrob Agents Chemother 37:371–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ak Alaba, Basiru SM, Simiyu J (2011) Effect of extracting solvents on the stability and performances of dye-sensitized solar cell prepared using extract from Lawsonia Inermis. Fundamental J Modern Physics 1:261–268

    Google Scholar 

  54. Jayaprakash N, Vijaya JJ, Kaviyarasu K, Kombaiah K, Kennedy LJ et al (2017) Green synthesis of Ag nanoparticles using tamarind fruit extract for the antibacterial studies. J Photochem Photobiol B: Biol 169:178–185

    Article  CAS  Google Scholar 

  55. Bhuiyan MAR, Islam A, Ali A, Islam MN (2017) Color and chemical constitution of natural dye henna (Lawsonia inermis L) and its application in the coloration of textiles. J Clean Prod 167:14–22

    Article  CAS  Google Scholar 

  56. Snafi AEA (2019) A review on Lawsonia inermis: A potential medicinal plant. Int J Curr Pharm Res 11:1–13

    Article  Google Scholar 

  57. Gomaa MM, Hugenschmidt C, Dickmann M, Hady EEA, Mohamed HFM et al (2018) Crosslinked PVA/SSA proton exchange membranes: correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys Chem Chem Phys 20:28287–28299

    Article  CAS  PubMed  Google Scholar 

  58. Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM et al (2015) Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol 6:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Musa MSM, Sulaiman WRW, Majid ZA, Majid ZA, Idris AK et al (2020) Henna extract as a potential sacrificial agent in reducing surfactant adsorption on kaolinite : The role of salinity. J King Saud Univ Eng Sci 32:543–547

    Google Scholar 

  60. Saadaoui S, Youssef MAB, Karoui MB, Gharbi R, Smecca E et al (2017) Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes. Beilstein J Nanotechnol 8:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muzaffar K, Dar BN, Kumar P (2017) Assessment of nutritional, physicochemical, antioxidant, structural and rheological properties of spray dried tamarind pulp powder. J Food Meas Charact 11:746–757

    Article  Google Scholar 

  62. Chen X, Kang D, Cao L, Li J, Zhou T et al (2019) Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step. Sep Purif Technol 210:690–697

    Article  CAS  Google Scholar 

  63. Jayakumar S, Nandakumar T, Vadivel M, Thinaharan C, George RP et al (2020) Corrosion inhibition of mild steel in 1 M HCl using Tamarindus indica extract: electrochemical, surface and spectroscopic studies. J Adhes Sci Technol 34:713–743

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. R. Divakar and Dr. B. Venkataraman for their constant support and encouragement.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Philip.

Ethics declarations

Conflict of interest

There is no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, S., Philip, J. Antimicrobial property of polyvinyl alcohol films containing extracts of Lawsonia inermis and Tamarindus indica. J Polym Res 30, 108 (2023). https://doi.org/10.1007/s10965-023-03485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03485-0

Keywords

Navigation