Skip to main content
Log in

Ultrasonic enhancement of the rheological properties of poly (acryl amide with 3-sulpho-propyl acrylate) microgel achieved via precipitation polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(acryl amide-co-3-sulpho-propyl acrylate) (poly(AM-TSPA)) microgels crosslinked by trimethylolpropane triacrylate (TMPTA) were prepared by free radical precipitation polymerization at 60 °C with the aid of ultrasonic illumination. 2,2'-azobisisobutyronitrile (AIBN) was used as the initiator. The experimental results showed that the efficiency of ultrasound treatment for synthesizing poly(AM-TSPA) microgel polymers was dependent on factors such as frequency, intensity, duration, temperature, and fundamental properties of microgel like macromolecular construction. By choosing appropriate ultrasound parameters (frequency, amplitude, temperature, time, and concentration of the inherent characteristics of each monomer), the ultrasound treatment could increase the viscosity of poly(AM-TSPA) and facilitate normal pseudo-plastic and shear thinning activity as well. Furthermore, under 120 W ultrasonic irradiation, maximal values of Gʹ and Gʺ were achieved by the increased elasticity of poly(AM-TSPA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Plamper FA, Richtering W (2017) Functional Microgels and Microgel Systems. Acc Chem Res 50(2):131–140

    Article  CAS  PubMed  Google Scholar 

  2. Kohestanian M, Bouhendi H, Keshavarzi N, Mahmoudi M, Pourjavadi A, Ghiass M (2022) Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods. Polym Bull 79(9):7775–7794

    Article  CAS  Google Scholar 

  3. Lyon LA, Fernandez NA (2012) The polymer/colloid duality of microgel suspensions. Annu Rev Phys Chem 63(1):25–43

    Article  CAS  PubMed  Google Scholar 

  4. Mourran A, Wu Y, Gumerov RA, Rudov AA, Potemkin II, Pich A, Möller M (2016) When colloidal particles become polymer coils. Langmuir 32(3):723–730

    Article  CAS  PubMed  Google Scholar 

  5. Zhang R, Gao R, Gou Q, Lai J, Li X (2022) Precipitation polymerization: a powerful tool for preparation of uniform polymer particles. Polymers 14:1851–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoare T, McLean D (2006) Kinetic prediction of functional group distributions in thermosensitive microgels. J Phys Chem B 110(41):20327–20336

    Article  CAS  PubMed  Google Scholar 

  7. Smith MH, Lyon LA (2011) Multifunctional Nanogels for siRNA Delivery. Acc Chem Res 45(7):985–993

    Article  PubMed  Google Scholar 

  8. Wong JE, Gaharwar AK, Müller-Schulte D, Bahadur D, Richtering W (2008) Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly Magnetic and thermoresponsive. J Colloid Interface Sci 324(1–2):47–54

    Article  CAS  PubMed  Google Scholar 

  9. Derdar H, Mitchell GR, Chaibedraa S, Mahendra VS, Cherifi Z, Bachari K, Chebout R, Touahra F, Meghabar R, Belbachir M (2022) Synthesis and characterization of copolymers and nanocomposites from limonene, styrene and organomodified-clay using ultrasonic assisted method. Polymers 14:2820–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, DeSimone JM (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci 108(2):586–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Virtanen OL, Brugnoni M, Kather M, Pich A, Richtering W (2016) The next step in precipitation polymerization of N-isopropylacrylamide particle number density control by monochain globule surface charge modulation. Polym Chem 7(32):5123–5131

    Article  CAS  Google Scholar 

  12. Pich A, Richtering W (2010) Microgels by precipitation polymerization synthesis characterization and functionalization. Adv Polym Sci 1–37

  13. Sigolaeva LV, Gladyr SY, Gelissen AP, Mergel O, Pergushov DV, Kurochkin IN, Richtering W (2014) Dual stimuli sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromol 15(10):3735–3745

    Article  CAS  Google Scholar 

  14. Morris BA (2017) The science and technology of flexible packaging multilayer films from resin and process to end use plastics design library pages. 121–147

  15. Barnes, HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Amsterdam, p. 13

  16. Gabriel C, Munstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47(3):619–630

    Article  CAS  Google Scholar 

  17. Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26(6):443–451

    Article  CAS  Google Scholar 

  18. Mason TJ, Lorimer, JP (1988) Sonochemistry Theory Applications and Uses of ultrasound in Chemistry Ellis Horwood Publishers Chichester

  19. Mason TJ (1990) Sonochemistry The uses of ultrasound in chemistry Royal Society of Chemistry, Cambridge

  20. Price GJ (1993) Current trends in sonochemistry ed Royal Society of Chemistry Cambridge

  21. Mason TJ (1991) Practical Sonochemistry A users guide to applications in chemistry and chemical engineering. Ellis Horwood Publishers Chichester 

  22. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Es-haghi H, Bouhendi H, Bagheri-Marandi G, Zohurian-Mehr MJ, Kabiry K (2010) Cross-linked poly(acrylic acid) microgels from precipitation polymerization. Polym Plast Technol Eng 49(12):1257–1264

    Article  CAS  Google Scholar 

  24. Rosa F, Bordado J, Casquilho M (2002) Hydrosoluble copolymers of acrylamide-(2-acrylamido-2-methylpropanesulfonic acid) synthesis and characterization by spectroscopy and viscometry. J Appl Polym Sci 87(2):192–198

    Article  Google Scholar 

  25. Ngoc NL, Takaomi K (2010) Ultrasound stimulus effect on hydrogen bonding in networked alumina and polyacrylic acid slurry. Ultrason Sonochem 17(1):186–192

    Article  CAS  PubMed  Google Scholar 

  26. Buchholz FL, Peppas NA (1994) Superabsorbent Polymers Science and Technology ACS Symposium Series 573 American Chemical society, Washington DC, pp 34 92–97 99–111–124

  27. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsurbent polymer material a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  28. Zohuriaan-Mehr MJ, Kabiri K (2006) Superabsurbents. Iran Polymer Society, Tehran, p 140

    Google Scholar 

  29. Yao KJ, Zhou WJ (1994) Synthesis and water absorbency of the copolymer of acrylamide with anionic monomers. J Appl Polym Sci 53(11):1533–1538

    Article  CAS  Google Scholar 

  30. Taberner TS, Villodre AM, Pla-Delfina JM, Herraez JV (2002) Consistency of carbopol 971-P NF gels and influence of soluble and cross- linked PVP.Inter. J Pharmaceut 233:43–50

    Article  Google Scholar 

  31. Arriola DJ, Cuti SS, Henton DE, Powell C, Smith PB (1997) Crosslinker reactivity and the structure of superabsorbent gels. J Appl Polym Sci 63(4):439–451

    Article  CAS  Google Scholar 

  32. Malinsky J, Klaban J, Dusek K (1971) J Mocromol Sci Chem 5(A):1071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Bouhendi.

Ethics declarations

Competing interest

I have read and agree to abide by the polymer Conflict of Interest policy. I acknowledge that I must disclose any conflict of interest, along with a description of any personal business interest, affiliation, or activity with any entity, whether or not active in the epilepsy field, which may give rise to a conflict of interest. I acknowledge that I understand that the polymer Conflict of Interest policy extends to my partner, a business or other entity with which I am associated and all members of my immediate household. I also understand that it is my obligation to promptly reveal any changes in my personal business interests, affiliations or activities which may give rise to a conflict of interest, by updating my Disclosure Statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathollahi, M., Bouhendi, H. Ultrasonic enhancement of the rheological properties of poly (acryl amide with 3-sulpho-propyl acrylate) microgel achieved via precipitation polymerization. J Polym Res 30, 172 (2023). https://doi.org/10.1007/s10965-023-03475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03475-2

Keywords

Navigation