Skip to main content
Log in

Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, poly (acrylic acid) (PAA) microgels were synthesized via alcohol type cross-linked by a free radical precipitation polymerization approach. At the first time, 1,6-hexanediol (1–6 diol), trimethylolpropane (TMP), and pentaerythritol (PEN) were selected as multifunctional cross- linking agent to synthesize cross-linked poly(acrylic acid) microgels. Alcohol type cross-linking agents can connect the PAA chains. The cross-linking reaction takes place due to reaction between hydroxyl groups of various cross-linkers and carboxyl groups of PAA chains. All of the hydroxyl groups do not participate in the reaction with acid groups of polymer chains through the polymerization stage; therefore, unreacted hydroxyl groups will react through sample drying (post-curing stage). The influence of cross-linker functionality and its concentration on various properties like swelling capacity, gel content, Tg (glass transition temperature), and rheological behavior were examined. The PAA microgels prepared via this cross-linking approach were compared to properties of microgels synthesized by epoxy type and vinyl type cross-linking agents in the previous studies. As a result, synthesized microgels via novel mechanisms have higher properties (for example, rheological and thermal properties) than that of PAA microgels prepared via the conventional mechanism. These behaviors can be due to decreasing \(\overline{Mc}\)(average molecular weight of two successive cross-links) in the polymeric network by utilizing new cross-linkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bin HY, Hashim S, Rahman WAWA (2017) Synthesis of polymeric nano/microgels: a review. J Polym Res 24:134

    Google Scholar 

  2. Begum R, Farooqi ZH, Khan SR (2016) Poly(N-isopropylacrylamide-acrylic acid) copolymer microgels for various applications: a review. Int J Polym Mater Polym Biomater 65:841–852

    CAS  Google Scholar 

  3. Rp U (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Google Scholar 

  4. Wu S, Dzubiella J, Kaiser J et al (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chemie - Int Ed 51:2229–2233

    CAS  Google Scholar 

  5. Khan SR, Farooqi ZH, Ajmal M et al (2013) Synthesis, characterization, and silver nanoparticles fabrication in N-isopropylacrylamide-Based polymer microgels for rapid degradation of p-nitrophenol. J Dispers Sci Technol 34:1324–1333

    CAS  Google Scholar 

  6. Ngai T, Behrens SH, Auweter H (2005) Novel emulsions stabilized by pH and temperature sensitive microgels. Chem Commun 3:331. https://doi.org/10.1039/b412330a

    Article  CAS  Google Scholar 

  7. Grabstain V, Bianco-Peled H (2003) Mechanisms controlling the temperature-dependent binding of proteins to poly(N-isopropylacrylamide) Microgels. Biotechnol Prog 19:1728–1733

    CAS  PubMed  Google Scholar 

  8. Raemdonck K, Braeckmans K, Demeester J, De Smedt SC (2014) Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 43:444–472

    CAS  PubMed  Google Scholar 

  9. Islam MR, Gao Y, Li X, Serpe MJ (2014) Responsive polymers for biosensing and protein delivery. J Mater Chem B 2:2444–2451

    CAS  PubMed  Google Scholar 

  10. Suzuki D, Horigome K, Kureha T et al (2017) Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J 49:695–702

    CAS  Google Scholar 

  11. Hellweg T (2013) Responsive core-shell microgels: Synthesis, characterization, and possible applications. J Polym Sci Part B Polym Phys 51:1073–1083

    CAS  Google Scholar 

  12. Watanabe T, Kobayashi C, Song C et al (2016) Impact of spatial distribution of charged groups in core poly(N-isopropylacrylamide)-based microgels on the resultant composite structures prepared by seeded emulsion polymerization of styrene. Langmuir 32:12760–12773

    CAS  PubMed  Google Scholar 

  13. Kumar Meena L, Rather H, Kedaria D, Vasita R (2020) Polymeric microgels for bone tissue engineering applications–a review. Int J Polym Mater Polym Biomater 69:381–397

    CAS  Google Scholar 

  14. Borro BC, Nordström R, Malmsten M (2020) Microgels and hydrogels as delivery systems for antimicrobial peptides. Colloids Surfaces B Biointerfaces 187:110835

    CAS  PubMed  Google Scholar 

  15. Barry BW, Meyer MC (1979) The rheological properties of carbopol gels II. Oscillatory properties of carbopol gels. Int J Pharm 2:27–40

    CAS  Google Scholar 

  16. Liu J, Ran Q, Miao C, Zhou D (2011) Synthesis and characterization of comb-like copolymer dispersant with methoxy poly ( ethylene oxide ) side chains synthesis and characterization of comb-like copolymer dispersant with methoxy poly (ethylene oxide) side chains. Polym Plast Technol Eng 50:59–66

    CAS  Google Scholar 

  17. Bouhendi H, Haddadi-asl V, Rafizadeh M (2009) Effects of non-solvent type and purification process on precipitation polymerization of acrylic acid in organic media. Iran Polym J 18:777–787

    CAS  Google Scholar 

  18. Pourjavadi A, Kurdtabar M (2007) Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J 43:877–889

    CAS  Google Scholar 

  19. Seiffert S (2014) Sensitive microgels as model colloids and microcapsules. J Polym Sci Part A Polym Chem 52:435–449

    CAS  Google Scholar 

  20. Kohestanian M, Bouhendi H (2016) Novel cross-linking mechanism with diol type cross-linkers, to prepare PAA Microgels via precipitation polymerization method. Polym–Plast Technol Eng 55:463–474

    CAS  Google Scholar 

  21. Bonham JA, Faers MA, Van Duijneveldt JS (2014) Non-aqueous microgel particles: synthesis, properties and applications. Soft Matter 10:9384–9398

    CAS  PubMed  Google Scholar 

  22. Nur H, Snowden MJ, Cornelius VJ et al (2009) Colloidal microgel in removal of water from biodiesel. Colloids Surf A Physicochem Eng Asp 335:133–137

    CAS  Google Scholar 

  23. Camli ST, Buyukserin F, Yavuz MS, Budak GG (2010) Fine-tuning of functional poly(methylmethacrylate) nanoparticle size at the sub-100nm scale using surfactant-free emulsion polymerization. Colloids Surf A Physicochem Eng Asp 366:141–146

    CAS  Google Scholar 

  24. Kobayashi H, Shimizu I, Nakazawa M et al (1969) The photochromism of evaporated photospiran. Bull Chem Soc Jpn 42:2735–2735. https://doi.org/10.1246/bcsj.42.2735

    Article  CAS  Google Scholar 

  25. Nie L, Jiang W, Yang W, et al (2005). Preparation of acrylic microgels by modified microemulsion polymerization and phase inversion. J Macromol Sci - Pure Appl Chem 42 A:623–631.

  26. Pich A, Richtering W (2010) Microgels by precipitation polymerization: synthesis, characterization, and functionalization. Adv Polym Sci 234:1–37

    CAS  Google Scholar 

  27. Pardeshi S, Singh SK (2016) Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv 6:23525–23536

    CAS  Google Scholar 

  28. El-Aassar MR, Masoud MS, Elkady MF, Elzain AA (2018) Synthesis, optimization, and characterization of poly (Styrene-co-Acrylonitrile) copolymer prepared via precipitation polymerization. Adv Polym Technol 37:2021–2029

    CAS  Google Scholar 

  29. Chen-Jolly H, Guillot P, Mignard E (2018) Supercritical continuous precipitation polymerization of acrylic acid in a droplet-based millifluidic device. Chem Eng J 334:389–399

    CAS  Google Scholar 

  30. Nakano T, Saito N, Minami H (2020) Preparation of cross-linked monodisperse poly(acrylic acid) particles by precipitation polymerization. Langmuir 36:11957–11962

    CAS  PubMed  Google Scholar 

  31. Cho S-H, Kim Y-J (2009) Synthesis of P(PEGMA-co-PBMA) microgels by precipitation polymerization in polymer solution. J Korea Acad Coop Soc 10:852–856

    Google Scholar 

  32. Goh ECC, Stöver HDH (2002) Cross-linked poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate) microspheres and microgels prepared by precipitation polymerization: a morphology study. Macromolecules 35:9983–9989

    CAS  Google Scholar 

  33. Jong L (2020) Poly(acrylic acid) grafted soy carbohydrate as thickener for waterborne paints. Mater Today Commun 23:100882. https://doi.org/10.1016/j.mtcomm.2019.100882

    Article  CAS  Google Scholar 

  34. Brady J, Dürig T, Lee PI, Li J-X (2017) Polymer Properties and Characterization. In: Developing Solid Oral Dosage Forms. Elsevier, 181–223.

  35. R. Varges P, M. Costa C, S. Fonseca B et al (2019) Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids 4:3

    Google Scholar 

  36. Es-haghi H, Bouhendi H, Bagheri-Marandi G et al (2010) Cross-linked poly(acrylic acid) microgels from precipitation polymerization. Polym Plast Technol Eng 49:1257–1264

    CAS  Google Scholar 

  37. Es-haghi H, Bouhendi H, Marandi GB et al (2013) An investigation into novel multifunctional cross-linkers effect on microgel prepared by precipitation polymerization. React Funct Polym 73:524–530

    CAS  Google Scholar 

  38. Es-Haghi H, Bouhendi H, Marandi GB et al (2012) Rheological properties of microgel prepared with long-chain crosslinkers by a precipitation polymerization method. J Macromol Sci Part B 51:880–896

    CAS  Google Scholar 

  39. Nae HN, Reichert WW (1992) Rheological properties of lightly crosslinked carboxy copolymers in aqueous solutions. Rheol Acta 31:351–360

    CAS  Google Scholar 

  40. Pourjavadi A, Kohestanian M, Yaghoubi M (2019) Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery. New J Chem 43:18647–18656

    CAS  Google Scholar 

  41. Kohestanian M, Bouhendi H (2015) Novel cross-linking mechanism for producing PAA microgels synthesized by precipitation polymerization method. Colloid Polym Sci 293:1983–1995

    CAS  Google Scholar 

  42. Kohestanian M, Bouhendi H, Ghiass M (2017) Synthesis and characterization of PAA microgels using multifunctional epoxy cross-linkers with a new cross-linking mechanism via a precipitation polymerization method. J Polym Res 24:194

    Google Scholar 

  43. Zuo Y, He X, Li P et al (2019) Preparation and characterization of hydrophobically grafted starches by in situ solid phase polymerization. Polymers (Basel) 11:72

    Google Scholar 

  44. Otera J, Nishikido J (2009) Esterification, Method, Reaction, and Applications. Wiley-VCH

    Google Scholar 

  45. Wolfe MS, Scopazzi C (1989) Rheology of swellable microgel dispersions : influence of crosslink density. J Colloid Interface Sci 133:265–277

    CAS  Google Scholar 

  46. Pourjavadi A, Rahemipoor S, Kohestanian M (2020) Synthesis and characterization of multi stimuli-responsive block copolymer-silica hybrid nanocomposite with core-shell structure via RAFT polymerization. Compos Sci Technol 188:107951

    CAS  Google Scholar 

  47. Nigro V, Angelini R, Rosi B et al (2019) Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: the role of poly(acrylic acid). J Colloid Interface Sci 545:210–219

    CAS  PubMed  Google Scholar 

  48. Kim JY, Song JY, Lee EJ, Park SK (2003) Rheological properties and microstructures of carbopol gel network system. Colloid Polym Sci 281:614–623

    CAS  Google Scholar 

  49. Islam MT, Rodríguez-Hornedo N, Ciotti S, Ackermann C (2004) Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res 21:1192–1199

    CAS  PubMed  Google Scholar 

  50. Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD (2009) Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci 9:20–28

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kohestanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohestanian, M., Bouhendi, H., Keshavarzi, N. et al. Preparation of poly (acrylic acid) microgels by alcohol type cross-linkers and a comparison with other cross-linking methods. Polym. Bull. 79, 7775–7794 (2022). https://doi.org/10.1007/s00289-021-03878-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03878-5

Keywords

Navigation