Skip to main content
Log in

Manipulation of crystallization and dielectric relaxation dynamics via hot pressing and copolymerization of PVDF with Hexafluoropropylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

PVDF and its copolymers have gained much interest recently as they can be utilized in a wide range of technological applications. In present work the effect on the physical properties via variation in the synthesis conditions and copolymerization of PVDF is discussed in detail. PVDF and P(VDF-HFP) free standing films have been synthesized by solvent casting and hot-pressing methods. Structural and electrical properties reveal that α-phase is dominantly present when the PVDF is processed via hot pressing technique. Addition of HFP significantly degrades the crystallinity of the polymers. While hot pressing significantly effects the crystallinity, phase type and dielectric properties. In solvent casting technique the molecular interaction between PVDF and solvent is a key parameter for observation of β-phase and low crystallinity. In solvent casted films single relaxation peak along with the Maxwell–Wagner like response, have been observed in the dielectric response. In hot press samples, an additional dielectric relaxation peak known as αc-relaxation has been observed which exhibits higher activation energy. αc-relaxation arise due to the dipole molecular movements in crystalline region of PVDF. The first relaxation peak is associated with the glass transition temperature, while improved crystalline nature with hot pressing and dominance of α-phase, confirms that the second relaxation arises due to the dipoles present in this crystal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8(7):975. https://doi.org/10.1143/JJAP.8.975

    Article  CAS  Google Scholar 

  2. Zirkl M, Sawatdee A, Helbig U, Krause M, Scheipl G, Kraker E et al (2011) An all‐printed ferroelectric active matrix sensor network based on only five functional materials forming a touchless control interface. Adv Mater 23(18):2069 74. https://doi.org/10.1002/adma.201100054

  3. Hu Z, Tian M, Nysten B, Jonas AM (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8(1):62–67. https://doi.org/10.1038/nmat2339

    Article  CAS  Google Scholar 

  4. Muduli SP, Parida S, Rout S, Rajput S, Kar M (2019) Effect of hot press temperature on β-phase, dielectric and ferroelectric properties of solvent casted Poly (vinyledene fluoride) films. Mater Res Express 6(9):095306. https://doi.org/10.1088/2053-1591/ab2d85

    Article  CAS  Google Scholar 

  5. Martín J, Zhao D, Lenz T, Katsouras I, de Leeuw DM, Stingelin N (2017) Solid-state-processing of δ-PVDF. Mater Horiz 4(3):408–414. https://doi.org/10.1039/C7MH00007C

    Article  CAS  Google Scholar 

  6. Huan TD, Boggs S, Teyssedre G, Laurent C, Cakmak M, Kumar S et al (2016) Advanced polymeric dielectrics for high energy density applications. Prog Mater Sci 83:236–269. https://doi.org/10.1016/j.pmatsci.2016.05.001

    Article  CAS  Google Scholar 

  7. Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116(7):4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  Google Scholar 

  8. Sousa R, Nunes-Pereira J, Ferreira J, Costa C, Machado A, Silva M et al (2014) Microstructural variations of poly (vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym Testing 40:245–255. https://doi.org/10.1016/j.polymertesting.2014.09.012

    Article  CAS  Google Scholar 

  9. Wang C, Zhang J, Gong S, Ren K (2018) Significantly enhanced breakdown field for core-shell structured poly (vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J Appl Phys 124(15):154103. https://doi.org/10.1063/1.5049405

    Article  CAS  Google Scholar 

  10. Lee HY, Choi B (2013) A multilayer PVDF composite cantilever in the Helmholtz resonator for energy harvesting from sound pressure. Smart Mater Struct 22(11):115025. https://doi.org/10.1088/0964-1726/22/11/115025

    Article  CAS  Google Scholar 

  11. Sharma M, Madras G, Bose S (2014) Process induced electroactive β-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16(28):14792–14799. https://doi.org/10.1039/C4CP01004C

    Article  CAS  Google Scholar 

  12. Vijayakumar E, Subramania A, Fei Z, Dyson PJ (2015) High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. RSC Adv 5(64):52026–52032. https://doi.org/10.1039/C5RA04944J

    Article  CAS  Google Scholar 

  13. Wu L, Huang G, Hu N, Fu S, Qiu J, Wang Z et al (2014) Improvement of the piezoelectric properties of PVDF-HFP using AgNWs. RSC Adv 4(68):35896–35903. https://doi.org/10.1039/C4RA03382E

    Article  CAS  Google Scholar 

  14. Aleksandrova M (2018) Spray deposition of piezoelectric polymer on plastic substrate for vibrational harvesting and force sensing applications. AIMS Mater Sci 5(6):1214–1222. https://doi.org/10.3934/matersci.2018.6.1214

    Article  Google Scholar 

  15. Ma W, Zhang J, Chen S, Wang X (2008) Crystalline phase formation of poly (vinylidene fluoride) from tetrahydrofuran/N, N-dimethylformamide mixed solutions. J Macromol Sci Part B Phys 47(3):434–449. https://doi.org/10.1080/00222340801954811

    Article  CAS  Google Scholar 

  16. Na H, Zhao Y, Zhao C, Zhao C, Yuan X (2008) Effect of hot-press on electrospun poly (vinylidene fluoride) membranes. Polym Eng Sci 48(5):934–940. https://doi.org/10.1002/pen.21039

    Article  CAS  Google Scholar 

  17. Shi L, Wang R, Cao Y, Feng C, Liang DT, Tay JH (2007) Fabrication of poly (vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes. J Membr Sci 305(1–2):215–225. https://doi.org/10.1016/j.memsci.2007.08.012

    Article  CAS  Google Scholar 

  18. Shi L, Wang R, Cao Y (2009) Effect of the rheology of poly (vinylidene fluoride-co-hexafluropropylene)(PVDF–HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors. J Membr Sci 344(1–2):112–122. https://doi.org/10.1016/j.memsci.2009.07.041

    Article  CAS  Google Scholar 

  19. Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109(12):6632–6686. https://doi.org/10.1021/cr800187m

    Article  CAS  Google Scholar 

  20. Bonardelli P, Moggi G, Turturro A (1986) Glass transition temperatures of copolymer and terpolymer fluoroelastomers. Polymer 27(6):905–909. https://doi.org/10.1016/0032-3861(86)90302-2

    Article  CAS  Google Scholar 

  21. Yee WA, Kotaki M, Liu Y, Lu X (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer 48(2):512–521. https://doi.org/10.1016/j.polymer.2006.11.036

    Article  CAS  Google Scholar 

  22. Esterly DM, Love BJ (2004) Phase transformation to β-poly (vinylidene fluoride) by milling. J Polym Sci Part B Polym Phys 42(1):91–97. https://doi.org/10.1002/polb.10613

    Article  CAS  Google Scholar 

  23. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polym J 3(5):600–610. https://doi.org/10.1295/polymj.3.600

    Article  CAS  Google Scholar 

  24. Hakeem N, Abdelkader H, El-Sheshtawi N, Eleshmawi I (2006) Spectroscopic, thermal, and electrical investigations of PVDF films filled with BiCl3. J Appl Polym Sci 102(3):2125–2131. https://doi.org/10.1002/app.24135

    Article  CAS  Google Scholar 

  25. Satapathy S, Pawar S, Gupta P, Varma K (2011) Effect of annealing on phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull Mater Sci 34(4):727–733. https://doi.org/10.1007/s12034-011-0187-0

    Article  CAS  Google Scholar 

  26. Kaur S, Singh DP (2017) Effect of annealing temperature on dielectric behavior of PVDF thick films. AIP Conference Proceedings: AIP Publishing LLC 120003. https://doi.org/10.1063/1.4980688

  27. Bhatti IN, Banerjee M, Bhatti IN (2013) Effect of annealing and time of crystallization on structural and optical properties of PVDF thin film using acetone as solvent. IOSR-JAP 4:42–47

    Article  Google Scholar 

  28. Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  29. Gregorio R Jr (2006) Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100(4):3272–3279. https://doi.org/10.1002/app.23137

    Article  CAS  Google Scholar 

  30. Xia W, Zhang Z (2018) PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics 1(1):17–31. https://doi.org/10.1049/iet-nde.2018.0001

    Article  Google Scholar 

  31. Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

  32. Xu P, Chen H, Zhou X, Xiang H (2021) Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery. J Membr Sci 617:118660. https://doi.org/10.1016/j.memsci.2020.118660

    Article  CAS  Google Scholar 

  33. Nangia A, Desiraju GR (1999) Pseudopolymorphism: occurrences of hydrogen bonding organic solvents in molecular crystals. Chem Commun 7:605–606. https://doi.org/10.1039/A809755K

    Article  Google Scholar 

  34. Benz M, Euler WB, Gregory OJ (2001) The influence of preparation conditions on the surface morphology of poly (vinylidene fluoride) films. Langmuir 17(1):239–243. https://doi.org/10.1021/la001206g

    Article  CAS  Google Scholar 

  35. Du C-H, Zhu B-K, Xu Y-Y (2006) The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends. J Mater Sci 41(2):417–421. https://doi.org/10.1007/s10853-005-2182-6

    Article  CAS  Google Scholar 

  36. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  37. Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525. https://doi.org/10.1080/00222340902837527

    Article  CAS  Google Scholar 

  38. Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X (2018) Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10(3):228. https://doi.org/10.3390/polym10030228

    Article  CAS  Google Scholar 

  39. Buonomenna M, Macchi P, Davoli M, Drioli E (2007) Poly (vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polymer J 43(4):1557–1572. https://doi.org/10.1016/j.eurpolymj.2006.12.033

    Article  CAS  Google Scholar 

  40. Hashim NA, Liu Y, Li K (2011) Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem Eng Sci 66(8):1565–1575. https://doi.org/10.1016/j.ces.2010.12.019

    Article  CAS  Google Scholar 

  41. Abolhasani MM, Naebe M, Guo Q (2014) A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites. Phys Chem Chem Phys 16(22):10679–10687. https://doi.org/10.1039/C4CP00031E

    Article  CAS  Google Scholar 

  42. Zhang Y, Wang W, Zhang J, Ni Y (2020) Dielectric relaxation processes in PVDF composite. Polym Test 91:106801. https://doi.org/10.1016/j.polymertesting.2020.106801

    Article  CAS  Google Scholar 

  43. Linares A, Nogales A, Rueda DR, Ezquerra TA (2007) Molecular dynamics in PVDF/PVA blends as revealed by dielectric loss spectroscopy. J Polym Sci Part B Polym Phys 45(13):1653–1661. https://doi.org/10.1002/polb.21210

    Article  CAS  Google Scholar 

  44. Sy JW, Mijovic J (2000) Reorientational dynamics of poly (vinylidene fluoride)/poly (methyl methacrylate) blends by broad-band dielectric relaxation spectroscopy. Macromolecules 33(3):933–946. https://doi.org/10.1021/ma9907035

    Article  CAS  Google Scholar 

  45. Bello A, Laredo E, Grimau M (1999) Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application to α− PVDF. Phys Rev B 60(18):12764. https://doi.org/10.1103/PhysRevB.60.12764

    Article  CAS  Google Scholar 

  46. Mijovic J, Sy J-W, Kwei T (1997) Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy. Macromolecules 30(10):3042–3050. https://doi.org/10.1021/ma961774w

    Article  CAS  Google Scholar 

  47. Teyssedre G, Bernes A, Lacabanne C (1993) Influence of the crystalline phase on the molecular mobility of PVDF. J Polym Sci Part B Polym Phys 31(13):2027–2034. https://doi.org/10.1002/polb.1993.090311316

    Article  CAS  Google Scholar 

  48. Anousheh N, Godey F, Soldera A (2017) Unveiling the impact of regioisomerism defects in the glass transition temperature of PVDF by the mean of the activation energy. J Polym Sci Part A Polym Chem 55(3):419–426. https://doi.org/10.1002/pola.28407

    Article  CAS  Google Scholar 

  49. Liz O, Medeiros A, Faria L (2011) FTIR and DSC studies on gamma irradiated P (VdF-HFP) fluoropolymers applied to dosimetry. Nucl Instrum Methods Phys Res Sect B 269(23):2819–2823. https://doi.org/10.1016/j.nimb.2011.08.017

    Article  CAS  Google Scholar 

  50. Nakagawa K, Ishida Y (1973) Annealing effects in poly (vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci Polym Phys Ed 11(11):2153–2171. https://doi.org/10.1002/pol.1973.180111107

    Article  CAS  Google Scholar 

  51. Karasawa N, Goddard WA III (1995) Dielectric properties of poly (vinylidene fluoride) from molecular dynamics simulations. Macromolecules 28(20):6765–6772. https://doi.org/10.1021/ma00124a010

    Article  CAS  Google Scholar 

  52. Arous M, Amor IB, Kallel A, Fakhfakh Z, Perrier G (2007) Crystallinity and dielectric relaxations in semi-crystalline poly (ether ether ketone). J Phys Chem Solids 68(7):1405–1414. https://doi.org/10.1016/j.jpcs.2007.02.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GHJ acknowledges the support of the Pakistan Science Foundation for funding this research work (Project No. PSF/TUBITAK-III/Biomed/C/QAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hassnain Jaffari.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffari, G.H., Khan, M.S.I., Mumtaz, F. et al. Manipulation of crystallization and dielectric relaxation dynamics via hot pressing and copolymerization of PVDF with Hexafluoropropylene. J Polym Res 30, 11 (2023). https://doi.org/10.1007/s10965-022-03395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03395-7

Keywords

Navigation