Skip to main content
Log in

Forsythia suspensa extract obtained from traditional Chinese herbal medicine as an efficient natural antioxidant for polyethylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Forsythia suspensa extract (FSE) obtained from traditional Chinese herbal medicine was employed as the stabilizer for polyethylene (PE). The effects of FSE on the thermos-oxidative stability, processing stability and mechanical properties of PE have been discussed through comparison of the performance of pure PE and modified PE samples on oxidation induction time (OIT), melt flow rate (MFR) and tensile tests. With the addition of FSE, the thermal oxidation stability of samples noticeably improved even after multiple extrusions: An OIT value of ca. 65.0 and 45.5 min could be achieved with PE-FSE0.8-626 sample after the first and fifth extrusions, which is extremely higher than pure PE. The improved antioxidant performance could be ascribed to the attractive free radical scavenging efficiency of FSE, confirmed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical–scavenging experiment. MFR results showed that FSE could effectively enhance the processing stability of PE matrix, the change of MFR after five extrusions was only 0.22 g/10 min for PE-FSE0.8-626 sample. Moreover, the tensile strength and elongation at break increased after the addition of FSE, which also maintained through the five extrusions. In addition, the cooperation of FSE and Ultranox 626 on the stability of PE was also explored. All results reveal that forsythia suspensa extract was good and multifunctional stabilizer for PE. This study opens up novel opportunities in utilizing traditional Chinese herbal medicine as natural antioxidants for the thermal oxidation stability of polyolefin, which is benefit for the development of sustainable and environmental friendly polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202(6):775–784. https://doi.org/10.1002/1521-3935(20010301)202:6%3c775::AID-MACP775%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  2. Marek AA, Verney V (2015) Rheological behavior of polyolefins during UV irradiation at high temperature as a coupled degradative process. Eur Polym J 72:1–11. https://doi.org/10.1016/j.eurpolymj.2015.09.003

    Article  CAS  Google Scholar 

  3. Schweighuber A, Felgel-Farnholz A, Bögl T, Fischer J, Buchberger W (2021) Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polym Degrad Stab 192:109689. https://doi.org/10.1016/j.polymdegradstab.2021.109689

    Article  CAS  Google Scholar 

  4. Allen NS, Edge M (2021) Perspectives on additives for polymers. 1. Aspects of stabilization. J Virol Addit Technol 27(1):5–27. https://doi.org/10.1002/vnl.21807

    Article  CAS  Google Scholar 

  5. Grause G, Chien M-F, Inoue C (2020) Changes during the weathering of polyolefins. Polym Degrad Stab 181:109364. https://doi.org/10.1016/j.polymdegradstab.2020.109364

    Article  CAS  Google Scholar 

  6. Zhang Y, Li H, Li M, Liu W, Li Q, Hu Y (2019) Synthesis and properties of novel polyethylene-based antioxidants with hindered phenols as side groups. Macromol Chem Phys 221(3):8. https://doi.org/10.1002/macp.201900410

    Article  CAS  Google Scholar 

  7. Brocca D, Arvin E, Mosbæk H (2002) Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Res 36(15):3675–3680. https://doi.org/10.1016/S0043-1354(02)00084-2

    Article  CAS  PubMed  Google Scholar 

  8. Loi M, Paciolla C (2021) Plant antioxidants for food safety and quality: exploring new trends of research. Antioxidants (Basel) 10(6):972. https://doi.org/10.3390/antiox10060972

    Article  CAS  Google Scholar 

  9. Tawfic ML, Morsi MS, Shafik ES (2022) Natural abundant prodegradant for Oxo- degradation of polymers. J Polym Res 29(2):1–8. https://doi.org/10.1007/s10965-022-02907-9

    Article  CAS  Google Scholar 

  10. Plota A, Masek A (2021) Plant-origin stabilizer as an alternative of natural additive to polymers used in packaging materials. Int J Mol Sci 22(8):4012. https://doi.org/10.3390/ijms22084012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren D, Zhang XX, Wang HK, Li WJ, Yu Y (2016) Improving thermo-oxidative degradation resistance of bamboo fiber reinforced polypropylene composite with antioxidants. Part I: Screening of antioxidants. J Appl Polym Sci 133(46):44198. https://doi.org/10.1002/app.44198

    Article  CAS  Google Scholar 

  12. Zia J, Paul UC, Heredia-Guerrero JA, Athanassiou A, Fragouli D (2019) Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 175:137–145. https://doi.org/10.1016/j.polymer.2019.05.012

    Article  CAS  Google Scholar 

  13. Xin M, Ma Y, Xu K, Chen M (2013) Dihydromyricetin: an effective non-hindered phenol antioxidant for linear low-density polyethylene stabilisation. J Therm Anal Calorim 114(3):1167–1175. https://doi.org/10.1007/s10973-013-3169-1

    Article  CAS  Google Scholar 

  14. Kirschweng B, Tilinger DM, Hégely B, Samu G, Tátraaljai D, Földes E, Pukánszky B (2018) Melt stabilization of PE with natural antioxidants: Comparison of rutin and quercetin. Eur Polym J 103:228–237. https://doi.org/10.1016/j.eurpolymj.2018.04.016

    Article  CAS  Google Scholar 

  15. Tátraaljai D, Földes E, Pukánszky B (2014) Efficient melt stabilization of polyethylene with quercetin, a flavonoid type natural antioxidant. Polym Degrad Stab 102:41–48. https://doi.org/10.1016/j.polymdegradstab.2014.02.010

    Article  CAS  Google Scholar 

  16. Tátraaljai D, Major L, Földes E, Pukánszky B (2014) Study of the effect of natural antioxidants in polyethylene: Performance of β-carotene. Polym Degrad Stab 102:33–40. https://doi.org/10.1016/j.polymdegradstab.2014.02.012

    Article  CAS  Google Scholar 

  17. Van Schoors L, Gueguen Minerbe M, Moscardelli S, Rabii H, Davies P (2018) Antioxidant properties of flax fibers in polyethylene matrix composites. Ind Crop Prod 126:333–339. https://doi.org/10.1016/j.indcrop.2018.09.047

    Article  CAS  Google Scholar 

  18. Cichosz S, Masek A (2020) Thermal behavior of green cellulose-filled thermoplastic elastomer polymer blends. Molecules 25(6):1279. https://doi.org/10.3390/molecules25061279

    Article  CAS  PubMed Central  Google Scholar 

  19. Aroso IM, Fernandes EM, Pires RA, Mano JF, Reis RL (2015) Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polym Degrad Stab 116:45–52. https://doi.org/10.1016/j.polymdegradstab.2015.03.006

    Article  CAS  Google Scholar 

  20. Bridson JH, Kaur J, Zhang Z, Donaldson L, Fernyhough A (2015) Polymeric flavonoids processed with co-polymers as UV and thermal stabilisers for polyethylene films. Polym Degrad Stab 122:18–24. https://doi.org/10.1016/j.polymdegradstab.2015.10.002

    Article  CAS  Google Scholar 

  21. Rasheed M, Jawaid M, Parveez B (2021) Preparation, characterization and properties of biodegradable composites from bamboo fibers—mechanical and morphological study. J Polym Environ 29(12):4120–4126. https://doi.org/10.1007/s10924-021-02158-7

    Article  CAS  Google Scholar 

  22. Gama N, Godinho B, Barros-Timmons A, Ferreira A (2021) PU/lignocellulosic composites produced from recycled raw materials. J Polym Environ 30(1):194–205. https://doi.org/10.1007/s10924-021-02191-6

    Article  CAS  Google Scholar 

  23. Xia H, Gao H, Zhang Y, Wang Z, Song L, Liu L, Tian X, Huang X, Yu Q (2020) Natural antioxidant from bamboo leaves for the processing stability of polypropylene. J Therm Anal Calorim 146:1657–1665. https://doi.org/10.1007/s10973-020-10115-0

    Article  CAS  Google Scholar 

  24. Xia H, Sui K, Ge T, Wu F, Sun Q, Wang Z, Song L, Huang X, Yu Q (2020) Natural compounds from Punica granatum peel as multiple stabilizers for polyethylene. Polym Eng Sci 60(11):2761–2769. https://doi.org/10.1002/pen.25506

    Article  CAS  Google Scholar 

  25. Sui K, Li X, Wang Z, Han Y, Cheng G, Yu Q (2021) Effects of green tea waste extract on properties of PE. Eng Plast Appl 49(7):137–143. https://doi.org/10.3969/j.issn.1001-3539.2021.07.024

    Article  CAS  Google Scholar 

  26. Xia H, Gao H, Sun Q, Wu F, Ge T, Sui K, Wang Z, Song L, Huang X, Yu Q (2020) Puerarin, an efficient natural stabilizer for both polyethylene and polypropylene. J Appl Polym Sci 137(48):49599. https://doi.org/10.1002/app.49599

    Article  CAS  Google Scholar 

  27. Hwang Y-H, Kim D-G, Li W, Yang HJ, Yim N-H, Ma JY (2017) Anti-inflammatory effects of Forsythia suspensa in dextran sulfate sodium-induced colitis. J Ethnopharmacol 206:73–77. https://doi.org/10.1016/j.jep.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  28. Long SF, He TF, Wu D, Yang M, Piao XS (2020) Forsythia suspensa extract enhances performance via the improvement of nutrient digestibility, antioxidant status, anti-inflammatory function, and gut morphology in broilers. Poult Sci 99(9):4217–4226. https://doi.org/10.1016/j.psj.2020.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schinella G, Tournier H, Prieto J, De Buschiazzo PM, Rıos J (2002) Antioxidant activity of anti-inflammatory plant extracts. Life Sci 70(9):1023–1033. https://doi.org/10.1016/S0024-3205(01)01482-5

    Article  CAS  PubMed  Google Scholar 

  30. Lu T, Piao X, Zhang Q, Wang D, Piao X, Kim S (2010) Protective effects of Forsythia suspensa extract against oxidative stress induced by diquat in rats. Food Chem Toxicol 48(2):764–770. https://doi.org/10.1016/j.fct.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  31. Xia Y, Yang B, Liang J, Kuang H (2015) Caffeoyl phenylethanoid glycosides from unripe fruits of Forsythia suspensa. Chem Nat Compd 51(4):656–659. https://doi.org/10.1007/s10600-015-1378-5

    Article  CAS  Google Scholar 

  32. Kuang H, Xia Y, Liang J, Yang B, Wang Q (2011) Lianqiaoxinoside B, a novel caffeoyl phenylethanoid glycoside from Forsythia suspensa. Molecules 16(7):5674–5681. https://doi.org/10.3390/molecules16075674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu H, Zhang Y, Wang Y, Li B, Sun W (2008) Antioxidant and antibacterial activity of two compounds (forsythiaside and forsythin) isolated from Forsythia suspensa. J Pharm Pharmacol 60(2):261–266. https://doi.org/10.1211/jpp.60.2.0016

    Article  CAS  PubMed  Google Scholar 

  34. Fang X, Wang Y, Wang J, Zhang J, Wang X (2013) Microwave-assisted extraction followed by RP-HPLC for the simultaneous extraction and determination of forsythiaside A, rutin, and phillyrin in the fruits of forsythia suspensa. J Sep Sci 36(16):2672–2679. https://doi.org/10.1002/jssc.201300317

    Article  CAS  PubMed  Google Scholar 

  35. Fang X, Gu S, Jin Z, Hao M, Yin Z, Wang J (2018) Optimization of ultrasonic-assisted simultaneous extraction of three active compounds from the fruits of forsythia suspensa and comparison with conventional extraction methods. Molecules 23(9):2115. https://doi.org/10.3390/molecules23092115

    Article  CAS  PubMed Central  Google Scholar 

  36. Masek A, Latos M, Piotrowska M, Zaborski M (2018) The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag Shelf Life 16:51–58. https://doi.org/10.1016/j.fpsl.2018.02.001

    Article  Google Scholar 

  37. Quiles-Carrillo L, Montava-Jordà S, Boronat T, Sammon C, Balart R, Torres-Giner S (2019) On the use of gallic acid as a potential natural antioxidant and ultraviolet light stabilizer in cast-extruded bio-based high-density polyethylene films. Polymers (Basel) 12(1):31. https://doi.org/10.3390/polym12010031

    Article  CAS  Google Scholar 

  38. Dopico-García M, Castro-López M, López-Vilariño J, González-Rodríguez M, Valentao P, Andrade P, García-Garabal S, Abad M (2011) Natural extracts as potential source of antioxidants to stabilize polyolefins. J Appl Polym Sci 119(6):3553–3559. https://doi.org/10.1002/app.33022

    Article  CAS  Google Scholar 

  39. Samper M, Fages E, Fenollar O, Boronat T, Balart R (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129(4):1707–1716. https://doi.org/10.1002/app.38871

    Article  CAS  Google Scholar 

  40. Kukharenko A, Brito A, Yashin YI, Yashin AY, Kuznetsov RM, Markin PA, Bochkareva NL, Pavlovskiy IA, Appolonova SA (2019) Total antioxidant capacity of edible plants commonly found in East Asia and the middle East determined by an amperometric method. J Food Meas Charact 14(2):809–817. https://doi.org/10.1007/s11694-019-00329-8

    Article  Google Scholar 

  41. Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125(2):288–306. https://doi.org/10.1016/j.foodchem.2010.08.012

    Article  CAS  Google Scholar 

  42. Suresh B, Maruthamuthu S, Khare A, Palanisamy N, Muralidharan VS, Ragunathan R, Kannan M, Pandiyaraj KN (2011) Influence of thermal oxidation on surface and thermo-mechanical properties of polyethylene. J Polym Res 18(6):2175–2184. https://doi.org/10.1007/s10965-011-9628-0

    Article  CAS  Google Scholar 

  43. Luzi F, Torre L, Puglia D (2020) Antioxidant packaging films based on ethylene vinyl alcohol copolymer (EVOH) and caffeic acid. Molecules 25(17):3953. https://doi.org/10.3390/molecules25173953

    Article  CAS  PubMed Central  Google Scholar 

  44. Monteiro M, Silva AF, Resende D, Braga SS, Coimbra MA, Silva A, Cardoso SM (2021) Strategies to broaden the applications of olive biophenols oleuropein and hydroxytyrosol in food products. Antioxidants (Basel) 10(3):444. https://doi.org/10.3390/antiox10030444

    Article  CAS  Google Scholar 

  45. Gong L, Wang C, Zhou H, Ma C, Zhang Y, Peng C, Li Y (2021) A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 169:105690. https://doi.org/10.1016/j.phrs.2021.105690

    Article  CAS  PubMed  Google Scholar 

  46. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584. https://doi.org/10.1016/S0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  47. Mendes JF, Castro LS, Corrêa AC, Marconcini JM, Mattoso LHC, Mendes RF (2020) Effects of short fibers and processing additives on HDPE composites properties reinforced with Pinus and Eucalyptus fibers. J Appl Polym Sci 138(15):50178. https://doi.org/10.1002/app.50178

    Article  CAS  Google Scholar 

  48. Salakhov II, Shaidullin NM, Chalykh AE, Matsko MA, Shapagin AV, Batyrshin AZ, Shandryuk GA, Nifant’ev IE (2021) Low-temperature mechanical properties of high-density and low-density polyethylene and their blends. Polymers (Basel) 13(11):1821. https://doi.org/10.3390/polym13111821

    Article  CAS  Google Scholar 

  49. Iyer KA, Zhang L, Torkelson JM (2016) Direct use of natural antioxidant-rich agro-wastes as thermal stabilizer for polymer: processing and recycling. ACS Sustainable Chem Eng 4(3):881–889. https://doi.org/10.1021/acssuschemeng.5b00945

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020LFG002, ZR2020QB023), the Foundation of 2019 Science and Technology Projects of Qingdao West Coast New District [grant number: 2019-18], and the Research Foundation of Qingdao Fusilin Chemical Science &Technology Co., Ltd. (FSL-RF 2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Yu or Guiqing Cheng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 200 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, K., Mei, F., Li, X. et al. Forsythia suspensa extract obtained from traditional Chinese herbal medicine as an efficient natural antioxidant for polyethylene. J Polym Res 29, 494 (2022). https://doi.org/10.1007/s10965-022-03340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03340-8

Keywords

Navigation