Skip to main content
Log in

Superior flame retardant and cost-effective aromatic polyoxydiazole fibers enabled by 2,6-Naphthalenedicarboxylic acid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(1,3,4-oxadiazole) (POD) fibers are one of high-performance heat-resistant organic fiber candidates with relatively low cost, while the poor flame retardancy heavily limits their applications. In this work, 2,6-naphthalene dicarboxylic acid (NDA) was performed as a non-halogenated monomer modifier to improve the flame retardancy of POD fibers. The NDA-modified POD copolymers were firstly obtained by tuning the concentrations of NDA, which were then wet-spun to prepare the POD fibers. The naphthalene ring was introduced into the main chain and successfully sulfonated, and the crystallinity of fibers decreased with the additional NDA. Under the drying condition, the limited oxygen index of the modified sample is up to 43%. The results showed that the structure of the burning residue became loose after the introduction of NDA. It has been considered that SO2 produced by combustion could be the main factor to enhance their flame retardant performance via a real-time analysis of combustion gas-phase products. Overall, the proposed NDA modified POD fibers can be served as a cost-effective, superior flame retardant, and heat-resistant material in a broad filed (i.e., electrical insulation, dielectric heat resistant materials).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agarwal P, Tang J, Narayanan ANL, Zhuang J (2020) Big data and predictive analytics in fire risk using weather data. Risk Anal 40:1438–1449. https://doi.org/10.1111/risa.13480

    Article  PubMed  Google Scholar 

  2. Udayraj TP, Das A, Alagirusamy R (2016) Heat and mass transfer through thermal protective clothing - A review. Int J Therm Sci 106:32–56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006

    Article  Google Scholar 

  3. El Aidani R, Nguyen-Tri P, Malajati Y et al (2013) Photochemical aging of an e-PTFE/NOMEX® membrane used in firefighter protective clothing. Polym Degrad Stab 98:1300–1310. https://doi.org/10.1016/j.polymdegradstab.2013.04.002

    Article  CAS  Google Scholar 

  4. Polanczyk A, Pichota-Polanczyk A, Dmochowska A et al (2020) Analysis of the effectiveness of decontamination fluids on the level of biological contamination of firefighter suits. Int J Environ Res Public Health 17:1–10. https://doi.org/10.3390/ijerph17082815

    Article  CAS  Google Scholar 

  5. Tadao K, Yoshikazu T, Toshiaki H, Kazuyuki Y (1997) Heat resistance properties of poly (p-phenylene‐2, 6‐benzobisoxazole) fiber. J Appl Polym Sci 65:1031–1036

    Article  Google Scholar 

  6. Ohalele HU, Fulton M, Torvi DA et al (2022) Comparison of techniques for prediction of mechanical strength of firefighters’ protective clothing using near-infrared spectral data. Fire Technol 58:591–613. https://doi.org/10.1007/s10694-021-01161-7

    Article  Google Scholar 

  7. Ohalele HU, Fulton M, Torvi DA et al (2022) Effects of high heat flux exposures on tensile strength of firefighters’ protective clothing. Fire Mater 46:719–731. https://doi.org/10.1002/fam.3018

    Article  CAS  Google Scholar 

  8. Yashchenko VS, Vasilevskii DA, Bezruchenko VS et al (2014) New high-tensile thermally stable copolymers of poly(p-phenylene-1,3,4- oxadiazole). Polym Sci Ser B 56:307–313. https://doi.org/10.1134/S1560090414030191

    Article  CAS  Google Scholar 

  9. Lavrenko PN, Okatova OV, Schulz B (1998) Stability and degradation of poly(1,4-phenylene-1,3,4-oxadiazole) molecules in sulphuric acid. Polym Degrad Stab 61:473–479. https://doi.org/10.1016/S0141-3910(97)00234-6

    Article  CAS  Google Scholar 

  10. Schulz B, Knochenhauer G, Brehmer L, Janietz S (1995) Structures and properties of aromatic poly(1,3,4-oxadiazole)s. Synth Met 69:603–604. https://doi.org/10.1016/0379-6779(94)02589-Q

    Article  CAS  Google Scholar 

  11. Liu P, Dong L, Wu L et al (2019) Structure and properties of halogen-free flame retardant and phosphorus-containing aromatic poly(1,3,4-oxadiazole)s fiber. RSC Adv 9:7147–7155. https://doi.org/10.1039/C8RA10071C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li W, Qi S, Liu Q et al (2020) Thermal degradation and flame retardant mechanism of sulfonated polyoxadiazole fibers modified by metal ions. J Polym Res 27. https://doi.org/10.1007/s10965-020-02336-6

  13. Cassidy PE, Fawcett NC (1979) Thermally Stable Polymers: Polyoxadiazoles, Polyoxadiazole-N-Oxides, Polythiazoles, and Polythiadiazoles. Journal of Macromolecular Science, Part C 17:209–266. https://doi.org/10.1080/00222357908080911

  14. Fent KW, LaGuardia M, Luellen D et al (2020) Flame retardants, dioxins, and furans in air and on firefighters’ protective ensembles during controlled residential firefighting. Environ Int 140:105756. https://doi.org/10.1016/j.envint.2020.105756

    Article  CAS  PubMed  Google Scholar 

  15. Liang S, Wang F, Liang J et al (2020) Synergistic effect between flame retardant viscose and nitrogen-containing intrinsic flame-retardant fibers. Cellulose 27:6083–6092. https://doi.org/10.1007/s10570-020-03203-9

    Article  CAS  Google Scholar 

  16. Yan X, Li Z, Zhou W et al (2016) Study of the thermal decomposition and flame-retardant mechanism of sulfonated polyoxadiazole fibers. J Therm Anal Calorim 126:1301–1311. https://doi.org/10.1007/s10973-016-5752-8

    Article  CAS  Google Scholar 

  17. Kim S, Linh PTT, Kang J, Kim I (2017) Phosphorus-containing thermoplastic poly(ether ester) elastomers showing intrinsic flame retardancy. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.45478

    Article  CAS  Google Scholar 

  18. Bakirtzis D, Ramani A, Delichatsios MA, Zhang J (2009) Structure of the condensed phase and char of fire-retarded PBT nanocomposites by TGA/ATR in N2. Fire Saf J 44:1023–1029. https://doi.org/10.1016/j.firesaf.2009.07.002

    Article  CAS  Google Scholar 

  19. Howell BA (2008) Development of additives possessing both solid-phase and gas-phase flame retardant activities. Polym Degrad Stab 93:2052–2057. https://doi.org/10.1016/j.polymdegradstab.2008.02.019

    Article  CAS  Google Scholar 

  20. Liu B, Zhao B, Wang Z (2021) Advanced Flame-Retardant Methods for Polymeric Materials. J Adv Mater 2107905:1–36. https://doi.org/10.1002/adma.202107905

    Article  CAS  Google Scholar 

  21. Lazar ST, Kolibaba TJ, Grunlan JC (2020) Flame-retardant surface treatments. Nat Rev Mater 5:259–275. https://doi.org/10.1038/s41578-019-0164-6

    Article  CAS  Google Scholar 

  22. Iwakura Y, Uno K, Hara S (1965) Poly-1,3,4-oxadiazoles. I. Polyphenylene-1,3,4-oxadiazoles. J Polym Sci Part A Gen Pap 3:45–54. https://doi.org/10.1002/pol.1965.100030106

    Article  CAS  Google Scholar 

  23. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  24. Xu J, Srivatsa Bettahalli NM, Chisca S et al (2018) Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation. Desalination 432:32–39. https://doi.org/10.1016/j.desal.2017.12.014

    Article  CAS  Google Scholar 

  25. El Gazi M, Sonnier R, Giraud S et al (2021) Fire behavior of thermally thin materials in cone calorimeter. Polym (Basel) 13. https://doi.org/10.3390/polym13081297

  26. Hamciuc C, Hamciuc E, Bruma M et al (2001) New aromatic polyethers containing phenylquinoxaline and 1,3,4-oxadiazole rings. Polym (Guildf) 42:5955–5961. https://doi.org/10.1016/S0032-3861(01)00081-7

    Article  CAS  Google Scholar 

  27. Abdolmaleki A, Zhiani M, Maleki M et al (2015) Preparation and evaluation of sulfonated polyoxadiazole membrane containing phenol moiety for PEMFC application. Polym (Guildf) 75:17–24. https://doi.org/10.1016/j.polymer.2015.08.021

    Article  CAS  Google Scholar 

  28. Gomes D, Roeder J, Ponce ML, Nunes SP (2007) Characterization of partially sulfonated polyoxadiazoles and oxadiazole-triazole copolymers. J Memb Sci 295:121–129. https://doi.org/10.1016/j.memsci.2007.02.046

    Article  CAS  Google Scholar 

  29. Yasemin A, Doğan M, Bayramlı E (2009) The effect of red phosphorus on the fire properties of intumescent pine wood flour – LDPE composites Yasemin. Finnish-Swedish Flame Days 2009, 4B. https://doi.org/10.1002/fam.236

    Article  Google Scholar 

  30. Chen R, Hu K, Tang H et al (2019) A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior. Polym Degrad Stab 166:334–343. https://doi.org/10.1016/j.polymdegradstab.2019.06.011

    Article  CAS  Google Scholar 

  31. Liu Y, Li Z, Wang J et al (2015) Thermal degradation and pyrolysis behavior of aluminum alginate investigated by TG-FTIR-MS and Py-GC-MS. Polym Degrad Stab 118:59–68. https://doi.org/10.1016/j.polymdegradstab.2015.04.010

    Article  CAS  Google Scholar 

  32. Wu WS, Duan PH, Wang YL et al (2021) High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure. Sci China Mater 64:2067–2080. https://doi.org/10.1007/s40843-020-1605-7

    Article  CAS  Google Scholar 

  33. Shen DK, Gu S, Luo KH et al (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol 101:6136–6146. https://doi.org/10.1016/j.biortech.2010.02.078

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Tang X, Wang R et al (2017) Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers. Fibers Polym 18:1421–1430. https://doi.org/10.1007/s12221-017-1185-7

    Article  CAS  Google Scholar 

  35. Gillo M, Iannelli P, Laurienzo P, et al (2002) Alkoxy-Substituted Poly(p-phenylene 1,3,4-oxadiazole)s:  Synthesis, Chemical Characterization, and Electro-Optical Properties. Chemistry of Materials 14:1539–1547. https://doi.org/10.1021/cm011134u

  36. Guo D, Yuan H, Yin X et al (2014) Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Bioresour Technol 152:147–153. https://doi.org/10.1016/j.biortech.2013.10.057

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Liu P, Gao M et al (2018) Influences of sodium species with different occurrence modes on the thermal behaviors and gas evolution during pyrolysis of a sodium-rich Zhundong subbituminous coal. J Energy Inst 91:695–703. https://doi.org/10.1016/j.joei.2017.05.011

    Article  CAS  Google Scholar 

  38. Acosta S, Sierra-Castillo A, Colomer JF et al (2021) Thermal stability of oxygen functionalization in v-CNTs by low kinetic energy ion irradiation. Vacuum 192:110423. https://doi.org/10.1016/j.vacuum.2021.110423

    Article  CAS  Google Scholar 

  39. Li S, Liu Y, Liu Y, Wang Q (2021) Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin. Compos Part B Eng 223:109115. https://doi.org/10.1016/j.compositesb.2021.109115

    Article  CAS  Google Scholar 

  40. Liu Y, Xu B, Qian L et al (2020) Impact on flame retardancy and degradation behavior of intumescent flame-retardant EP composites by a hyperbranched triazine-based charring agent. Polym Adv Technol 31:3316–3327. https://doi.org/10.1002/pat.5055

    Article  CAS  Google Scholar 

  41. Chen R, Luo Z, Yu XJ et al (2020) Synthesis of chitosan-based flame retardant and its fire resistance in epoxy resin. Carbohydr Polym 245:116530. https://doi.org/10.1016/j.carbpol.2020.116530

    Article  CAS  PubMed  Google Scholar 

  42. Yang AH, Deng C, Chen H et al (2017) A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stab 144:70–82. https://doi.org/10.1016/j.polymdegradstab.2017.08.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Laboratory of Polymer Materials Engineering (Grant No.: sklpme2022-2-04). The authors gratefully acknowledge the State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, and the Analytical &Testing Centre of Sichuan University.

Funding

This study was supporting by sklpme2022-2-04.

Author information

Authors and Affiliations

Authors

Contributions

Yulin Zhou: Formal analysis, Investigation, Data Curation, Writing - Original Draft, Visualization. Wentao Li: Validation, Supervision. Jiadeng Zhu: Writing - Review & Editing. Shuheng Liang: Formal analysis, Data Curation. Qibao Xie: Investigation, Formal analysis. Mengjin Jiang: Conceptualization, Funding acquisition, Project administration, Writing - Review & Editing.

Corresponding author

Correspondence to Mengjin Jiang.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, W., Zhu, J. et al. Superior flame retardant and cost-effective aromatic polyoxydiazole fibers enabled by 2,6-Naphthalenedicarboxylic acid. J Polym Res 29, 440 (2022). https://doi.org/10.1007/s10965-022-03285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03285-y

Keywords

Navigation