Skip to main content
Log in

Dry-spun Polyimide Fibers with Excellent Thermal Stability, Intrinsic Flame Retardancy and Ultralow Smoke Release

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer fiber with an ultrahigh thermal stability, superior flame retardancy and low smoke release during combustion is urgently needed and a crucial challenge for developing advanced fireproof textiles. In this study, a series of high-performance polyimide fibers are synthesized by copolymerizing 4,4′-diaminodiphenylmethane (MDA) into the pyromellitic dianhydride-p-phenylenediamine (PMDA-PDA) backbone for synergistically solving the technical challenge of poor fiber processing ability of these polyimides with a high inherent molecular rigidity. The glass transition temperature (Tg) of resultant fibers with the PDA molar ratio over 50 mol% reaches above 420 °C and their 10 wt% weight loss temperature (T10%) is within 543–633 °C. For the typical fiber containing 80 mol% of PDA, the limiting oxygen index (LOI) reaches 39% and exhibits a rapid self-extinguishing performance after deviating from the flame. Meanwhile, this fiber exhibits the minimum heat release rate of 14.1 kW/m2 in a long ignition time of 813 s during combustion, revealing its better flame retardancy than the well-known Nomex fiber with a heat release rate of 140.6 kW/m2 during the 120 s ignition. Meanwhile, the total smoke production of this polyimide fiber is only 1/9 of the Nomex fiber. Accordingly, the excellent flame retardancy of polyimide fibers indicating them more attractive as the fireproof materials in the field of emergency protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, W. T.; Song, P. A; Yu, B.; Fang, Z. P.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687.

    Article  CAS  Google Scholar 

  2. Liu W.; Zhang, S.; Chen, X. S.; Yu, L. H.; Zhu, X. J.; Feng, Q. L. Thermal behavior and fire performance of nylon-6,6 fabric modified with acrylamide by photografting. Polym. Degrad. Stabil. 2010, 95, 1842–1848.

    Article  CAS  Google Scholar 

  3. Yu, S. R.; Xia, Z. Y.; Kiratitanavit, W.; Thota, S.; Kumar, J.; Mosurkal, R.; Nagarajan, R. Unusual role of labile phenolics in imparting flame resistance to polyamide. Polym. Degrad. Stabil. 2020, 175, 109103.

    Article  Google Scholar 

  4. Jiang, P.; Zhao, Q.; Zhang, S.; Gu, X. Y.; Hu, Z. W.; Xu, G. Z. Flammability and char formation of polyamide 66 fabric: chemical grafting versus pad-dry process. Ind. Eng. Chem. Res. 2015, 54, 6085–6092.

    Article  CAS  Google Scholar 

  5. Kim, I.; Thompson, A. L.; Kim, S. C.; Hamins, A.; Bundy, M.; Nazaré, S.; Davis, R.D.; Zammarano, M. Demonstration of an all-in-one solution for fire safe upholstery furniture: a benign backcoating for smoldering and flame-resistant cover fabrics. Fire Mater. 2022, 46, 677–693.

    Article  CAS  Google Scholar 

  6. Li, Y.; Li, X.; Pan, Y. T.; Xu, X.; Song, Y.; Yang, R. Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs. J. Hazard. Mater. 2020, 395, 122604.

    Article  CAS  PubMed  Google Scholar 

  7. Norouzi, M.; Zare, Y.; Kiany, P. Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization. Polym. Rev. 2015, 55, 531–560.

    Article  CAS  Google Scholar 

  8. Wang, X.; Kalali, E. N.; Wan, J. T.; Wang, D. Y. Carbon-family materials for flame retardant polymeric materials. Polym. Sci. 2017, 69, 22–46.

    CAS  Google Scholar 

  9. Meng, D.; Guo, J.; Wang, A. J.; Gu, X. Y.; Wang, Z. W.; Jiang, S. L.; Zhang, S. The fire performance of polyamide 66 fabric coated with soybean protein isolation. Prog. Org. Coat. 2020, 148, 105835.

    Article  CAS  Google Scholar 

  10. Zhou, Q.; Wu, W.; Zhou, S.; Xing, T.; Sun, G.; Chen, G. Polydopamine-induced growth of mineralized γ-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chem. Eng. J. 2020, 382, 122988.

    Article  CAS  Google Scholar 

  11. Breuer, R.; Zhang, Y. X.; Erdmann, R.; Hernandez, O. E. V. Development and processing of flame retardant cellulose acetate compounds for foaming applications. J. Mater. Sci. 2020, 137, 48863.

    CAS  Google Scholar 

  12. Li, P.; Wang, B.; Xu, Y. J.; Jiang, Z.; Dong, C.; Liu, Y.; Zhu, P. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sust. Chem. & Eng. 2019, 7, 19246–19256.

    Article  CAS  Google Scholar 

  13. Zhang, Y.; Tian, W.; Liu, L.; Cheng, W.; Wang, W.; Liew, K. M.; Wang, B.; Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 2019, 372, 1077–1090.

    Article  CAS  Google Scholar 

  14. Liu, Y.; Pan, Y. T.; Wang, X.; Acuña, P.; Zhu, P.; Wagenknecht, U.; Heinrich, G.; Zhang, X. Q.; Wang, R.; Wang, D.Y. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chem. Eng. J. 2016, 294, 167–175.

    Article  CAS  Google Scholar 

  15. Maddalena, L.; Carosio, F.; Gomez, J.; Saracco, G.; Fine, A. Layer-by-layer assembly of efficient flame retardant coatings based on high aspect ratio graphene oxide and chitosan capable of preventing ignition of PU foam. Polym. Degrad. Stabil. 2019, 152, 1–9.

    Article  Google Scholar 

  16. Qiu, X.; Li, Z.; Li, X.; Zhang, Z. Flame retardant coatings prepared using layer by layer assembly. Chem. Eng. J. 2018, 334, 108–122.

    Article  CAS  Google Scholar 

  17. Zhang, X.; Shi, M. Flame retardant vinylon/poly (m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. J. Hazard. Mater. 2019, 365, 9–15.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, B.; Li, P.; Xu, Y. J.; Jiang, Z. M.; Dong, C. H.; Liu, Y.; Zhu, P. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos. Part B: Eng. 2020, 194, 108038.

    Article  CAS  Google Scholar 

  19. Carosio, F.; Blasio, A. D.; Cuttica, F.; Alongi, J.; Malucelli, G. Flame retardancy of polyester and polyester-cotton blends treated with caseins. Ind & Eng. Chem. Res. 2014, 53, 3917–3923.

    Article  CAS  Google Scholar 

  20. Zhang, Q. H.; Dong, J.; Wu, D. Z.; Yang, S. Y. in Advanced Polyimide Fibers. Elsevier, Inc., Oxford, 2018, p. 67–92.

    Google Scholar 

  21. Bhat, G.; Schwanke, R. Thermal properties of a polyimide fiber. J. Therm. Anal. Calorim. 1997, 49, 399–405.

    Article  CAS  Google Scholar 

  22. Imura, Y.; Hogan, R.; Jaffe, M. in Advances in Filament Yarn Spinning of Textiles and Polymers. Elsevier, Oxford, 2014, p. 187–202.

    Book  Google Scholar 

  23. Snyder, R. W.; Thomson, B.; Bartges, B. Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: thermal curing. Macromolecules 1989, 22, 4166–4172.

    Article  CAS  Google Scholar 

  24. Bao, F.; Zhang, R.; Dong, Z. X.; Qi, F. L.; Cai, Y. C.; Dai, X. M.; Ji, X. L.; Qiu, X. P. Comparison of high-performance polyimide copolymer fibers containing pyrimidine moieties based on coplanar structures. Polymer 2021, 231, 124113.

    Article  CAS  Google Scholar 

  25. He, W. J.; Kong, C.; Cai, Y. D.; Ye, L.; Chen, S.T.; Li, S. H.; Zhao, X. W. Thermal stability enhancement of oriented polyethylene by formation of epitaxial shish-kebab crystalline structure. Polym. Degrad. Stabil. 2022, 195, 109771.

    Article  CAS  Google Scholar 

  26. Wang, Q. Z.; Liu, C.; Xu, Y. J.; Liu, Y.; Zhu, P.; Wang, Y. Z. Highly efficient flame retardation of polyester fabrics via novel DOPO-modified sol-gel coatings. Polymer 2021, 226, 123761.

    Article  CAS  Google Scholar 

  27. Sonnier, R.; Viretto, A.; Dumazert, L.; Gallard, B. A method to study the two-step decomposition of binary blends in cone calorimeter. Combust. Flame 2016, 169, 1–10.

    Article  CAS  Google Scholar 

  28. Gu, W. W.; Dong, Z. F.; Zhang, A. Y.; Ma, T. Y.; Hu, Q.; Wei, J. F.; Wang, R. Functionalization of PET with carbon dots as copolymerizable flame retardants for the excellent smoke suppressants and mechanical properties. Polym. Degrad. Stabil. 2022, 195, 109766.

    Article  CAS  Google Scholar 

  29. Ding, Y.; Stoliarov, S. I.; Kraemer, R. H. Pyrolysis model development for a polymeric material containing multiple flame retardants: relationship between heat release rate and material composition. Combust. Flame 2019, 202, 43–57.

    Article  CAS  Google Scholar 

  30. Zhang, F. Q.; Wang, B.; Xu, Y. J.; Li, P.; Liu, Y.; Zhu, P. Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics. Cellulose 2020, 27, 8341–8349.

    Article  CAS  Google Scholar 

  31. Zhang, S.; Fan, X.; Xu, C.; Ji, P.; Wang, C.; Wang, H. An inherently flame-retardant polyamide 6 containing a phosphorus group prepared by transesterification polymerization. Polyme 2020, 207, 122890.

    Article  CAS  Google Scholar 

  32. Li, P.; Wang, Q. Z.; Wang, B.; Liu, Y. Y.; Xu, Y. J.; Liu, Y.; Zhu, P. Blending alginate fibers with polyester fibers for flame-retardant filling materials: Thermal decomposition behaviors and fire performance. Polym. Degrad. Stabil. 2021, 183, 109470.

    Article  CAS  Google Scholar 

  33. Peng, H.; Wang, D.; Fu, S. Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. Chem. Eng. J. 2020, 384, 123288.

    Article  CAS  Google Scholar 

  34. Jung, D.; Bhattacharyya, D. Keratinous fiber based intumescent flame retardant with controllable functional compound loading, ACS Sustain. Chem. & Eng. 2018, 6, 13177–13184.

    CAS  Google Scholar 

  35. Peng, H.; Wang, D.; Li, M.; Zhang, L.; Liu, M.; Fu, S. NP-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber. Chem. Eng. J. 2019, 372, 873–885.

    Article  CAS  Google Scholar 

  36. Zhu, H. Q.; Zhao, H. R.; Wei, H. Y.; Wang, W.; Wang, H. R.; Li, K.; Lu, X. X.; Tan, B. Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal. Combust. Flame 2020, 216, 354–368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51903038 and 21975040), the Scientific Research Innovation Plan of Shanghai Education Commission (No. 2019-01-07-00-03-E00001), the Natural Science Foundation of Shanghai (No. 21ZR1400200) and the Project “Fiber materials and products for emergency support and public safety” from Jiangsu New Vision Advanced Functional Fiber Innovation Center Co., Ltd. (No. 2021-fx020204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Dong or Qing-Hua Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Wang, YP., Li, XT. et al. Dry-spun Polyimide Fibers with Excellent Thermal Stability, Intrinsic Flame Retardancy and Ultralow Smoke Release. Chin J Polym Sci 40, 1422–1431 (2022). https://doi.org/10.1007/s10118-022-2792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2792-3

Keywords

Navigation