Skip to main content
Log in

Sustainable alginate-carboxymethyl cellulose superabsorbents prepared by a novel quasi-cryogelation method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The research in biopolymer-based superabsorbents is gaining importance in the green chemistry field thanks to their environmentally friendly properties. In this study, a biopolymer-based superabsorbent made of calcium ion crosslinked alginate/carboxymethyl cellulose composite was prepared by a new quasi-cryogelation process, where the complete ionic gelation takes place before the freezing step, in contrast to the conventional cryogelation technique in which gelation occurs under semi-frozen conditions. Thanks to the facile quasi-cryogelation method, the morphology of the gels changed and a significant increase in water absorption properties has been achieved. The swelling properties of the material were investigated in distilled water and different physiological fluids. Results show that the proposed material shows good water absorption property where a water absorption of 2343% was reached and even after five cycles this value was 1200%. As a result, this study reports a biopolymer-based sustainable superabsorbent which is appropriate for various applications such as the removal of pollutants from water or diaper production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Pham BTT, Duong THT, Nguyen TT et al (2021) Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. J Polym Res 28:1–14. https://doi.org/10.1007/s10965-021-02761-1

    Article  CAS  Google Scholar 

  2. Kaygusuz H, Uzaşçı S, Erim FB (2015) Removal of Fluoride from Aqueous Solution Using Aluminum Alginate Beads. CLEAN - Soil, Air, Water 43:724–730. https://doi.org/10.1002/clen.201300632

    Article  CAS  Google Scholar 

  3. Kaygusuz H, Uysal M, Adımcılar V, Erim FB (2015) Natural alginate biopolymer montmorillonite clay composites for vitamin B2 delivery. J Bioact Compat Polym 30:48–56. https://doi.org/10.1177/0883911514557014

    Article  CAS  Google Scholar 

  4. Kaygusuz H, Erim FB (2013) Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. React Funct Polym 73:1420–1425. https://doi.org/10.1016/j.reactfunctpolym.2013.07.014

    Article  CAS  Google Scholar 

  5. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27:1–11. https://doi.org/10.1007/s10965-020-02231-0

    Article  CAS  Google Scholar 

  6. Lin CC, Chiu JY (2021) Glycerol-modified γ-PGA and gellan composite hydrogel materials with tunable physicochemical and thermal properties for soft tissue engineering application. Polymer 230:124049. https://doi.org/10.1016/J.POLYMER.2021.124049

    Article  CAS  Google Scholar 

  7. Kalaycıoğlu Z, Kahya N, Adımcılar V et al (2020) Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J 133:109777. https://doi.org/10.1016/j.eurpolymj.2020.109777

    Article  CAS  Google Scholar 

  8. Donati I, Paoletti S (2009) Material Properties of Alginates. Springer, Berlin, Heidelberg, pp 1–53

    Google Scholar 

  9. Horie K, Barón M, Fox RB et al (2004) Definitions of terms relating to reactions of polymers and to functional polymeric materials: (IUPAC Recommendations 2003). Pure Appl Chem 76:889–906

    Article  CAS  Google Scholar 

  10. G R, C.R R, Nair S V., Menon D, (2020) Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohydr Polym 248:116763. https://doi.org/10.1016/J.CARBPOL.2020.116763

    Article  Google Scholar 

  11. Shahi S, Motasadizadeh HR, Zohuriaan-Mehr MJ (2017) Surface modification of superabsorbing hydrogels through a feasible esterification reaction: Toward tunable superabsorbent for hygienic applications. Int J Polym Mater Polym Biomater 66:544–557. https://doi.org/10.1080/00914037.2016.1252348

    Article  CAS  Google Scholar 

  12. Mignon A, Graulus GJ, Snoeck D et al (2014) pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. J Mater Sci 50:970–979. https://doi.org/10.1007/s10853-014-8657-6

    Article  CAS  Google Scholar 

  13. Snoeck D, Van Tittelboom K, Steuperaert S et al (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct 25:13–24. https://doi.org/10.1177/1045389X12438623

    Article  CAS  Google Scholar 

  14. Loh JW, Goh XY, Nguyen PTT et al (2022) Advanced Aerogels from Wool Waste Fibers for Oil Spill Cleaning Applications. J Polym Environ 30:681–694. https://doi.org/10.1007/s10924-021-02234-y

    Article  CAS  Google Scholar 

  15. Ersen Dudu T, Alpaslan D, Aktas N (2021) Superabsorbent hydrogels based on N, N-dimethylacrylamide and maleic acid for applications in agriculture as water purifier and nitrogen carrier. Polym Bull. https://doi.org/10.1007/s00289-021-03918-0

    Article  Google Scholar 

  16. Pourjavadi A, Bassampour Z, Ghasemzadeh H et al (2016) Porous Carrageenan-g-polyacrylamide/bentonite superabsorbent composites: swelling and dye adsorption behavior. J Polym Res 23:1–10. https://doi.org/10.1007/s10965-016-0955-z

    Article  CAS  Google Scholar 

  17. Bulut E, Şanli O (2014) Novel ionically crosslinked acrylamide-grafted poly(vinyl alcohol)/sodium alginate/sodium carboxymethyl cellulose pH-sensitive microspheres for delivery of Alzheimer’s drug donepezil hydrochloride: Preparation and optimization of release conditions. Artif Cells Nanomed Biotechnol 44:431–442. https://doi.org/10.3109/21691401.2014.962741

    Article  CAS  PubMed  Google Scholar 

  18. Bajpai J, Mishra S, Bajpai AK (2007) Dynamics of controlled release of potassium nitrate from a highly swelling binary polymeric blend of alginate and carboxymethyl cellulose. J Appl Polym Sci 106:961–972. https://doi.org/10.1002/APP.26703

    Article  CAS  Google Scholar 

  19. Mallepally RR, Bernard I, Marin MA et al (2013) Superabsorbent alginate aerogels J Supercrit Fluids 79:202–208. https://doi.org/10.1016/j.supflu.2012.11.024

    Article  CAS  Google Scholar 

  20. Demitri C, Del Sole R, Scalera F et al (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460. https://doi.org/10.1002/app.28660

    Article  CAS  Google Scholar 

  21. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395. https://doi.org/10.1016/j.carbpol.2006.03.013

    Article  CAS  Google Scholar 

  22. El-Naggar AA (2016) Radiation synthesis of superabsorbent hydrogels based on carboxymethyl cellulose/sodium alginate for absorbent of heavy metal ions from waste water. J Thermoplast Compos Mater 29:16–27. https://doi.org/10.1177/0892705713518786

    Article  CAS  Google Scholar 

  23. Nataraj D, Reddy N (2020) Chemical Modifications Of Alginate And Its Derivatives. Int J Chem Res 1–17. https://doi.org/10.22159/IJCR.2020V4I1.98

  24. Uyar G, Kaygusuz H, Erim FB (2016) Methylene blue removal by alginate–clay quasi-cryogel beads. React Funct Polym 106:1–7. https://doi.org/10.1016/j.reactfunctpolym.2016.07.001

    Article  CAS  Google Scholar 

  25. Girón-Hernández J, Gentile P, Benlloch-Tinoco M (2021) Impact of heterogeneously crosslinked calcium alginate networks on the encapsulation of β-carotene-loaded beads. Carbohydr Polym 271:118429. https://doi.org/10.1016/J.CARBPOL.2021.118429

    Article  PubMed  Google Scholar 

  26. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  27. Kahya N, Erim FB (2019) Surfactant modified alginate composite gels for controlled release of protein drug. Carbohydr Polym 224:115165. https://doi.org/10.1016/j.carbpol.2019.115165

    Article  CAS  PubMed  Google Scholar 

  28. Yuan P, Jia Y, Zhang L et al (2012) (2012) Swelling studies and in vitro release of acemetacin and BSA from alginate gel beads crosslinked with Ca2+ or Ba2+. J Wuhan Univ Technol Sci Ed 274(27):669–674. https://doi.org/10.1007/S11595-012-0526-Z

    Article  Google Scholar 

  29. Mikula K, Skrzypczak D, Ligas B, Witek-Krowiak A (2019) Preparation of hydrogel composites using Ca2+ and Cu2+ ions as crosslinking agents. SN Appl Sci 1:1–15. https://doi.org/10.1007/s42452-019-0657-3

    Article  CAS  Google Scholar 

  30. Riaz S, Malik S, Hussain T et al (2018) Development of antibacterial fibers and study on effect of guar-gum addition on properties of carboxymethylcellulose (CMC)/alginate fibers. IOP Conf Ser Mater Sci Eng 414:012020. https://doi.org/10.1088/1757-899X/414/1/012020

    Article  Google Scholar 

  31. Lawrie G, Keen I, Drew B et al (2007) Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromol 8:2533–2541. https://doi.org/10.1021/BM070014Y

    Article  CAS  Google Scholar 

  32. Ren H, Gao Z, Wu D et al (2016) Efficient Pb(II) removal using sodium alginate–carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409. https://doi.org/10.1016/J.CARBPOL.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Balkız G, Pingo E, Kahya N et al (2018) Graphene Oxide/Alginate Quasi-Cryogels for Removal of Methylene Blue. Water Air Soil Pollut 229:1–9. https://doi.org/10.1007/s11270-018-3790-5

    Article  CAS  Google Scholar 

  34. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent Polymer Materials: A Review. Iran Polym J 17:451–447

    CAS  Google Scholar 

  35. Im Y, Lu M, Ziya Y, Seven SA (2022) Triblock Superabsorbent Polymer Nanocomposites with Enhanced Water Retention Capacities and Rheological Characteristics. ACS Omega 7:20486–20494. https://doi.org/10.1021/ACSOMEGA.1C06961

    Article  Google Scholar 

  36. Khushbu WSG, Kumar A (2019) Synthesis and assessment of carboxymethyl tamarind kernel gum based novel superabsorbent hydrogels for agricultural applications. Polymer 182:121823. https://doi.org/10.1016/J.POLYMER.2019.121823

    Article  CAS  Google Scholar 

  37. Bardajee GR, Pourjavadi A, Soleyman R (2009) Irradiation synthesis of biopolymer-based superabsorbent hydrogel: Optimization using the Taguchi method and investigation of its swelling behavior. Adv Polym Technol 28:131–140. https://doi.org/10.1002/ADV.20154

    Article  CAS  Google Scholar 

  38. Xie X, Ma L, Chen Y et al (2022) Bagasse Cellulose Composite Superabsorbent Material with Double-Crosslinking Network Using Chemical Modified Nano-CaCO3 Reinforcing Strategy. Nanomater 12:1459. https://doi.org/10.3390/NANO12091459

    Article  CAS  Google Scholar 

  39. Pourjavadi A, Amini-Fazl MS, Hosseinzadeh H (2005) Partially hydrolyzed crosslinked alginate-graff-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties. Macromol Res 13:45–53. https://doi.org/10.1007/BF03219014

    Article  CAS  Google Scholar 

  40. Bardajee GR, Pourjavadi A, Soleyman R, Ghavami S (2012) Salep-g-poly(sodium acrylate)/alumina as an environmental-sensitive biopolymer superabsorbent composite: Synthesis and investigation of its swelling behavior. Adv Polym Technol 31:41–51. https://doi.org/10.1002/ADV.20233

    Article  CAS  Google Scholar 

  41. Qiao D, Liu H, Yu L et al (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr Polym 147:146–154. https://doi.org/10.1016/j.carbpol.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  42. Batista RA, Espitia PJP, Vergne DMC et al (2020) Development and Evaluation of Superabsorbent Hydrogels Based on Natural Polymers. Polym 12:2173. https://doi.org/10.3390/POLYM12102173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results of this study are derived from the M.Sc. thesis of Burcu Orhan. The authors would like to thank Istanbul Technical University Capillary Electrophoresis and Biopolymer Applications Research Laboratory and Sabancı University SUNUM for the supply of materials and providing the opportunities for testing.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Burcu Orhan: Investigation, Visualization, Writing-original draft Hakan Kaygusuz: Conceptualization, Validation, Writing – review & editing, Visualization F. B. Erim: Supervision, Conceptualization, Validation, Writing- review & editing.

Corresponding author

Correspondence to Hakan Kaygusuz.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, B., Kaygusuz, H. & Erim, F. Sustainable alginate-carboxymethyl cellulose superabsorbents prepared by a novel quasi-cryogelation method. J Polym Res 29, 333 (2022). https://doi.org/10.1007/s10965-022-03185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03185-1

Keywords

Navigation