Skip to main content
Log in

3D printing thermo-responsive shape memory polymer composite based on PCL/TPU blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polycaprolactone (PCL) and thermoplastic polyurethane (TPU), are the most common shape-memory materials, but towards PCL/TPU blends, little attention was paid to the FDM printability and shape memory properties. Therefore, according to the PCL/TPU composites with different compositions, this work focus on the process parameters in fabricating composites filament and 3D printing (FDM), properties characterization analysis (i.e., TGA, DSC, FTIR, SEM, mechanical features, shape-memory effects). Combining TGA with FTIR analysis, we can find out that the FDM printing process does not affect the thermal properties of PCL/TPU composites, and no new chemical groups appeared. By mechanical testing, the tensile strength decreased with the increasing TPU content of the blends, which is also consistent with SEM measurements. Moreover, the DSC measurements can assist in testing the shape memory recovery ratio and shape memory fixity rate of each PCL/TPU composite and verify there is no evident effect of 3D printing process parameters on shape memory effects. Finally,3D printing (FDM) functional structures further demonstrate the shape memory properties of the new composite. In summary, this work can provide some experimental foundation and process guidance of one category of new material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pandini S, Passera S, Messori M et al (2012) Two-way reversible shape memory behaviour of crosslinked poly (ε-caprolactone). Polymer 53(9):1915–1924

    Article  CAS  Google Scholar 

  2. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  3. Wang Y, Wang Y, Wei Q et al (2021) Effects of the composition ratio on the properties of PCL/PLA blends: a kind of thermo-sensitive shape memory polymer composites. J Polym Res 28(12):1–13

    Article  Google Scholar 

  4. Cheng Z, Zhang D, Lv T et al (2018) Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Adv Func Mater 28(7):1705002

    Article  Google Scholar 

  5. Wang W, Liu D, Liu Y et al (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24

    Article  CAS  Google Scholar 

  6. Conti S, Lenz M, Rumpf M (2016) Hysteresis in magnetic shape memory composites: Modeling and simulation. J Mech Phys Solids 89:272–286

    Article  Google Scholar 

  7. Han XJ, Dong ZQ, Fan MM et al (2012) pH-induced shape-memory polymers. Macromol Rapid Commun 33(12):1055–1060

    Article  CAS  PubMed  Google Scholar 

  8. Beblo RV, Weiland LM (2011) Light activated shape memory polymer characterization—part II. J appl mechan 78(6)

  9. Wei ZG, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J Mater Sci 33(15):3743–3762

    Article  CAS  Google Scholar 

  10. Schurch KE, Ashbee KHG (1977) A near perfect shape-memory ceramic material. Nature 266(5604):706–707

    Article  CAS  Google Scholar 

  11. Löwenberg C, Balk M, Wischke C et al (2017) Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc Chem Res 50(4):723–732

    Article  PubMed  Google Scholar 

  12. Gu X, Mather PT (2012) Entanglement-based shape memory polyurethanes: synthesis and characterization. Polymer 53(25):5924–5934

    Article  CAS  Google Scholar 

  13. Zhu Y, Hu J, Yeung LY et al (2007) Effect of steaming on shape memory polyurethane fibers with various hard segment contents. Smart Mater Struct 16(4):969

    Article  CAS  Google Scholar 

  14. Panahi-Sarmad M, Goodarzi V, Amirkiai A et al (2019) Programing polyurethane with systematic presence of graphene-oxide (GO) and reduced graphene-oxide (rGO) platelets for adjusting of heat-actuated shape memory properties. Eur Polymer J 118:619–632

    Article  CAS  Google Scholar 

  15. Chen S, Hu J, Liu Y et al (2007) Effect of molecular weight on shape memory behavior in polyurethane films. Polym Int 56(9):1128–1134

    Article  CAS  Google Scholar 

  16. Sáenz-Pérez M, Laza JM, García-Barrasa J et al (2018) Influence of the soft segment nature on the thermomechanical behavior of shape memory polyurethanes. Polym Eng Sci 58(2):238–244

    Article  Google Scholar 

  17. Maitland DJ, Metzger MF, Schumann D et al (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 30(1):1–11

    Article  Google Scholar 

  18. Wache HM, Tartakowska DJ, Hentrich A et al (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci - Mater Med 14(2):109–112

    Article  CAS  PubMed  Google Scholar 

  19. Hendrikson WJ, Rouwkema J, Clementi F et al (2017) Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication 9(3):031001

    Article  PubMed  Google Scholar 

  20. Wu JJ, Huang LM, Zhao Q et al (2018) 4D printing: history and recent progress. Chin J Polym Sci 36(5):563–575

    Article  CAS  Google Scholar 

  21. Raasch J, Ivey M, Aldrich D et al (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141

    CAS  Google Scholar 

  22. Yang Y, Chen Y, Wei Y et al (2016) 3D printing of shape memory polymer for functional part fabrication. The Int J Adv Manuf Technol 84(9):2079–2095

  23. Kashyap D, Kumar PK, Kanagaraj S (2018) 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Addit Manuf 24:687–695

    CAS  Google Scholar 

  24. Christ JF, Aliheidari N, Ameli A et al (2017) 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401

    Article  CAS  Google Scholar 

  25. Gul JZ, Sajid M, Choi KH (2019) Retracted Article: 3D printed highly flexible strain sensor based on TPU–graphene composite for feedback from high speed robotic applications. J Maters Chem C 7(16):4692–4701

    Article  CAS  Google Scholar 

  26. Xu B, Huang WM, Pei YT et al (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polymer J 45(7):1904–1911

    Article  CAS  Google Scholar 

  27. Yildirim ED, Besunder R, Guceri S et al (2008) Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function. Virtual and Physical Prototyping 3(4):199–207

    Article  Google Scholar 

  28. Tian G, Zhu G, Ren T et al (2019) The effects of PCL diol molecular weight on properties of shape memory poly (ε-caprolactone) networks. J Appl Polym Sci 136(6):47055

    Article  Google Scholar 

  29. Ajili SH, Ebrahimi NG, Soleimani M (2009) Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater 5(5):1519–1530

    Article  CAS  PubMed  Google Scholar 

  30. Ansari M, Golzar M, Baghani M et al (2018) Shape memory characterization of poly (ε-caprolactone) (PCL)/polyurethane (PU) in combined torsion-tension loading with potential applications in cardiovascular stent. Polym Testing 68:424–432

    Article  CAS  Google Scholar 

  31. Jing X, Mi HY, Huang HX et al (2016) Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone) (PCL) blends as self-knotting sutures. J Mechanical Behavior of Biomed Mater 64:94–103

  32. Mosleh Y, Ebrahimi NG, Mahdavian A et al (2014) TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iran Polym J 23(2):137–145

    Article  CAS  Google Scholar 

  33. Xu X, Fan P, Ren J et al (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos Sci Technol 168:255–262

    Article  CAS  Google Scholar 

  34. Ren D, Chen Y, Li H et al (2019) High-efficiency dual-responsive shape memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites. Colloids Surf A 580

  35. Haroosh H J, Dong Y (2015) Systematic Development of Electrospun PLA/PCL Fiber Hybrid Mats: Preparation, Material Characterization, and Application in Drug Delivery. Biodegradable Polyesters

  36. Navarro-Baena I, Sessini V, Dominici F et al (2016) Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97–108

    Article  CAS  Google Scholar 

  37. Huang L, Yi N, Wu Y et al (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv Mater 25(15):2224–2228

    Article  CAS  PubMed  Google Scholar 

  38. Ur Rehman H, Chen Y, Hedenqvist MS et al (2018) Self-Healing Shape Memory PUPCL Copolymer with High Cycle Life. Adv Func Mater 28(7):1704109

    Article  Google Scholar 

  39. Yuan X, Sang Z, Zhao J et al (2017) Synthesis and properties of non-isocyanate aliphatic thermoplastic polyurethane elastomers with polycaprolactone soft segments. J Polym Res 24(6):1–11

    Article  Google Scholar 

Download references

Acknowledgements

This project was sponsored by the National Natural Science Foundation of China (Grant No. 51905438), the Key Research and Development Program of Shanxi Province (Grant No. 2022GY-228), the Fundamental Research Funds for the Central Universities (Grant No.31020210506006), the National Key Research and Development Program of China (Grant No. 2019QY(Y)0502). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for DSC, SEM and TGA tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 22707 KB)

Supplementary file1 (MP4 4983 KB)

Supplementary file1 (MP4 5075 KB)

Supplementary file1 (MP4 4986 KB)

Supplementary file1 (MP4 4991 KB)

Supplementary file1 (MP4 5017 KB)

Supplementary file1 (MP4 5011 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Li, M. et al. 3D printing thermo-responsive shape memory polymer composite based on PCL/TPU blends. J Polym Res 29, 243 (2022). https://doi.org/10.1007/s10965-022-03095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03095-2

Keywords

Navigation