Skip to main content

Advertisement

Log in

Preparation and analysis of biodegradable polydioxanone/chitosan film

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the miscibility and degradability of biodegradable polymers. Polydioxanone (PDO) was blended with chitosan, and the resulting films were prepared via film casting. The blends were analyzed according to composition ratio and in vitro biodegradation. The intermolecular interaction in the blend was verified through spectroscopic analysis. The addition of chitosan was found to lead to a significant enhancement in the mechanical properties of the blend. Also, the chitosan embedded film showed different morphologies and thermal properties from the pure PDO film. The current study might show a possibility of employing PDO based biodegradable film for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Di Raimondo R, Sanz-Esporrín J, Sanz-Martin I, Plá R, Luengo F, Vignoletti F, Nuñez J, Sanz M (2021) Hard and soft tissue changes after guided bone regeneration using two different barrier membranes: an experimental in vivo investigation. Clin Oral Investig 25(4):2213–2227

    Article  PubMed  Google Scholar 

  2. Guo H, Xia D, Zheng Y, Zhu Y, Liu Y, Zhou Y (2020) A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: in vitro and in vivo studies. Acta Biomater 106:396–409

    Article  CAS  PubMed  Google Scholar 

  3. Greenstein G, Greenstein B, Cavallaro J, Tarnow D (2009) The role of bone decortication in enhancing the results of guided bone regeneration: a literature review. J Periodontol 80(2):175–189

    Article  CAS  PubMed  Google Scholar 

  4. Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6(10):1187–1197

    Article  CAS  PubMed  Google Scholar 

  5. Elgali I, Omar O, Dahlin C, Thomsen P (2017) Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 125(5):315–337

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jung RE, Fenner N, Hämmerle CH, Zitzmann NU (2013) Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14 years. Clin Oral Implants Res 24(10):1065–1073

    Article  PubMed  Google Scholar 

  7. Peng W, Chen JX, Shan XF, Wang YC, He F, Wang XJ, Tan LL, Yang K (2019) Mg-based absorbable membrane for guided bone regeneration (GBR): a pilot study. Rare Met 38(6):577–587

    Article  CAS  Google Scholar 

  8. Zhang L, Xiong C, Deng X (1995) Biodegradable polyester blends for biomedical application. J Appl Polym Sci 56(1):103–112

    Article  CAS  Google Scholar 

  9. John J, Mani R, Bhattacharya M (2002) Evaluation of compatibility and properties of biodegradable polyester blends. J Polym Sci Part A: Polym Chem 40(12):2003–2014

    Article  CAS  Google Scholar 

  10. Sabino MA, González S, Márquez L, Feijoo JL (2000) Study of the hydrolytic degradation of polydioxanone PPDX. Polym Degradation Stab 69(2):209–216

    Article  CAS  Google Scholar 

  11. Bai W, Zhang LF, Li Q, Chen DL, Xiong CD (2010) In vitro hydrolytic degradation of poly (para-dioxanone)/poly (D, L-lactide) blends. Mater Chem Phys 122(1):79–86

    Article  CAS  Google Scholar 

  12. Ebrahimpour M, Safekordi AA, Mousavi SM, Heydarinasab A (2018) A miscibility study on biodegradable poly butylene succinate/polydioxanone blends. J Polym Res 25(2):35

    Article  Google Scholar 

  13. Ikejima T, Inoue Y (2000) Crystallization behavior and environmental biodegradability of the blend films of poly (3-hydroxybutyric acid) with chitin and chitosan. Carbohydr Polym 41(4):351–356

    Article  CAS  Google Scholar 

  14. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  PubMed  Google Scholar 

  15. Chandy T, Sharma CP (1990) Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs 18(1):1–24

    Article  CAS  PubMed  Google Scholar 

  16. Wan Y, Wu H, Yu A, Wen D (2006) Biodegradable polylactide/chitosan blend membranes. Biomacromol 7(4):1362–1372

    Article  CAS  Google Scholar 

  17. Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78(1):169–174

    Article  CAS  Google Scholar 

  18. Tamimi M, Rajabi S, Pezeshki-Modaress M (2020) Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 164:389–402

    Article  CAS  PubMed  Google Scholar 

  19. Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich B (1998) Heat capacity of poly-p-dioxanone. J Macromol Sci B 37(1):27–44

    Article  Google Scholar 

  20. Lustriane C, Dwivany FM, Suendo V, Reza M (2018) Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol 45(1):36–44

    Article  Google Scholar 

  21. Kapantaidakis G, Kaldis S, Dabou X, Sakellaropoulos G (1996) Gas permeation through PSF-PI miscible blend membranes. J Membr Sci 110(2):239–247

    Article  CAS  Google Scholar 

  22. Piotrowska-Kirschling A, Brzeska J (2020) The effect of chitosan on the chemical structure, morphology, and selected properties of polyurethane/chitosan composites. Polymers 12(5):1205

    Article  CAS  PubMed Central  Google Scholar 

  23. Younes I, Hajji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  CAS  PubMed  Google Scholar 

  24. Ikejima T, Yagi K, Inoue Y (1999) Thermal properties and crystallization behavior of poly (3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200(2):413–421

    Article  CAS  Google Scholar 

  25. Gartner C, López BL, Sierra L, Graf R, Spiess HW, Gaborieau M (2011) Interplay between structure and dynamics in chitosan films investigated with solid-state NMR, dynamic mechanical analysis, and X-ray diffraction. Biomacromol 12(4):1380–1386

    Article  CAS  Google Scholar 

  26. Masson JF, Manley RSJ (1991) Cellulose/poly (4-vinylpyridine) blends. Macromolecules 24(22):5914–5921

    Article  CAS  Google Scholar 

  27. Katicha SW, Flintsch GW (2012) Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation. Rheol Acta 51(8):675–689

    Article  CAS  Google Scholar 

  28. Abay AK, Gebeyehu MB, Lin HK, Lin PC, Lee JY, Wu CM, Murakami RI, Chiang TC (2016) Preparation and characterization of poly (lactic acid)/recycled polypropylene blends with and without the coupling agent, n-(6-aminohexyl) aminomethyltriethoxysilane. J Polym Res 23(9):198

    Article  Google Scholar 

  29. Diab MA, El-Sonbati AZ, Bader DMD, Zoromba MS (2012) Thermal stability and degradation of chitosan modified by acetophenone. J Polym Environ 20(1):29–36

    Article  CAS  Google Scholar 

  30. Han CM, Lih E, Choi SK, Bedair TM, Lee YJ, Park W, Han DK, Son JS, Joung YK (2018) Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. J Ind Eng Chem 67:396–406

    Article  CAS  Google Scholar 

  31. Sharmin N, Khan RA, Salmieri S, Dussault D, Lacroix M (2012) Fabrication and characterization of biodegradable composite films made of using poly (caprolactone) reinforced with chitosan. J Polym Environ 20(3):698–705

    Article  CAS  Google Scholar 

  32. Correlo V, Boesel L, Bhattacharya M, Mano J, Neves N, Reis R (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng 403(1–2):57–68

    Article  Google Scholar 

  33. Böstman O (1991) Absorbable implants for the fixation of fractures. J Bone Joint Surg 73(1):148–153

    Article  PubMed  Google Scholar 

  34. Wu CS (2005) A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46(1):147–155

    Article  CAS  Google Scholar 

  35. Torres-Huerta AM, Palma-Ramírez D, Dominguez-Crespo MA, Del Angel-López D, De La Fuente D (2014) Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. Eur Polym J 61:285–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GRRC program of Gyeonggi Province (GRRC Dankook 2016–B03). In addition, this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1A5A1024127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Ethics declarations

Conflict of interest

The authors declare no conflicts of financial or non-financial competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J.Y., Song, Y.S. Preparation and analysis of biodegradable polydioxanone/chitosan film. J Polym Res 29, 224 (2022). https://doi.org/10.1007/s10965-022-03082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03082-7

Keywords

Navigation